大样品随机双盲测试
This post aims to explore a step-by-step approach to create a K-Nearest Neighbors Algorithm without the help of any third-party library. In practice, this Algorithm should be useful enough for us to classify our data whenever we have already made classifications (in this case, color), which will serve as a starting point to find neighbors.
这篇文章旨在探索逐步方法,以在无需任何第三方库的帮助下创建K最近邻居算法 。 在实践中,只要我们已经进行了分类(在这种情况下为颜色),该算法就足以对我们进行数据分类,这将成为寻找邻居的起点。
For this post, we will use a specific dataset which can be downloaded here. It contains 539 two dimensional data points, each with a specific color classification. Our goal will be to separate them into two groups (train and test) and try to guess our test sample colors based on our algorithm recommendation.
对于这篇文章,我们将使用一个特定的数据集,可以在此处下载 。 它包含539个二维数据点,每个数据点都有特定的颜色分类。 我们的目标是将它们分为两组(训练和测试),并根据算法建议尝试猜测测试样本的颜色。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/77774.html