- 等相位面移动速度
e j ( ω t − β z ) e^{j(\omega t-\beta z)} ej(ωt−βz) - 相速 v p v_p vp 是指导波系统中传输电磁波的等相位面沿轴向移动的速度。
v p = d z d t = ω β v_p=\frac{dz}{dt}=\frac{\omega}{\beta} vp=dtdz=βω
v p = v 1 − ( λ λ c ) 2 > v v_p=\frac{v}{\sqrt{1-(\frac{\lambda}{\lambda_c})^2}}>v vp=1−(λcλ)2v>v - 相速度描述的是波的等相位面移动的速度,不是能量传播的速度,因此TE和TM波相速度不是物质真是运动的速度,与相对论不矛盾。
- 群速 v g v_g vg 是电磁信号包络传播的速度,它代表了电磁波能量的传播速度
v g = d ω d β = v 1 − ( λ λ c ) 2 < v v_g=\frac{d\omega}{d\beta}=v\sqrt{1-(\frac{\lambda}{\lambda_c})^2}<v vg=dβdω=v1−(λcλ)2<v
- 群速度是指一群具有相近的 ω \omega ω 和 β \beta β 的波群在传输过程中的共同速度,或者是已调包络的速度。从物理概念上看,这种速度就是能量的传播速度。
v p v g = v 2 v_p v_g=v^2 vpvg=v2
- 推导 v g v_g vg
k 2 = ω 2 μ ϵ k^2=\omega^2\mu\epsilon k2=ω2μϵ
β = k 2 − k c 2 = ω 2 μ ϵ − k c 2 \beta=\sqrt{k^2-k_c^2}=\sqrt{\omega^2\mu\epsilon-k_c^2} β=k2−kc2=ω2μϵ−kc2
d β d ω = ω μ ϵ ω 2 μ ϵ − k c 2 = k 2 / ω k 2 − k c 2 = k 2 / ω k 1 − ( k c / k ) 2 = k / ω 1 − ( k c / k ) 2 \frac{d\beta}{d\omega}=\frac{\omega\mu\epsilon}{\sqrt{\omega^2\mu\epsilon-k_c^2}}=\frac{k^2/ \omega}{\sqrt{k^2-k_c^2}}=\frac{k^2/ \omega}{k\sqrt{1-(k_c/k)^2}}=\frac{k/ \omega}{\sqrt{1-(k_c/k)^2}} dωdβ=ω2μϵ−kc2ωμϵ=k2−kc2k2/ω=k1−(kc/k)2k2/ω=1−(kc/k)2k/ω
k = ω μ ϵ k=\omega\sqrt{\mu\epsilon } k=ωμϵ
1 / μ ϵ = v 1/\sqrt{\mu\epsilon }=v 1/μϵ=v
k c / k = 2 π / λ c 2 π / λ = λ λ c k_c/k=\frac{2\pi/\lambda_c}{2\pi/\lambda}=\frac{\lambda}{\lambda_c} kc/k=2π/λ2π/λc=λcλ
d β d ω = 1 v 1 − ( λ λ c ) 2 \frac{d\beta}{d\omega}=\frac{1}{v\sqrt{1-(\frac{\lambda}{\lambda_c})^2}} dωdβ=v1−(λcλ)21

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/39265.html