2025年conv2d参数(conv2d conv3d)

conv2d参数(conv2d conv3d)import argparseimpo osimport copyimport torchfrom torch import nnimport torch optim as optimimport torch backends cudnn as cudnnfrom torch utils data dataloader import DataLoaderfr tqdm import

大家好,我是讯享网,很高兴认识大家。



import argparse
import os
import copy

import torch
from torch import nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from models import FSRCNN
from datasets import TrainDataset, EvalDataset
from utils import AverageMeter, calc_psnr


if name == ‘main’:
parser = argparse.ArgumentParser()
# 训练文件
parser.add_argument(‘–train-file’, type=str,help=“the dir of train data”,default=”https://www.ctyun.cn/zhishi/Train/91-image_x4.h5”)
# 测试集文件
parser.add_argument(‘–eval-file’, type=str,help=“thr dir of test data “,default=”https://www.ctyun.cn/zhishi/Test/Set5_x4.h5”)
# 输出的文件夹
parser.add_argument(‘–outputs-dir’,help=“the output dir”, type=str,default=”https://www.ctyun.cn/zhishi/outputs”)
parser.add_argument(‘–weights-file’, type=str)
parser.add_argument(‘–scale’, type=int, default=2)
parser.add_argument(‘–lr’, type=float, default=1e-3)
parser.add_argument(‘–batch-size’, type=int, default=16)
parser.add_argument(‘–num-epochs’, type=int, default=20)
parser.add_argument(‘–num-workers’, type=int, default=8)
parser.add_argument(‘–seed’, type=int, default=123)
args = parser.parse_args()

args.outputs_dir = os.path.join(args.outputs_dir, ‘x{}’.format(args.scale))

if not os.path.exists(args.outputs_dir):
os.makedirs(args.outputs_dir)

cudnn.benchmark = True
device = torch.device(‘cuda:0’ if torch.cuda.is_available() else ‘cpu’)

torch.manual_seed(args.seed)

model = FSRCNN(scale_factor=args.scale).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam([
{‘params’: model.first_part.parameters()},
{‘params’: model.mid_part.parameters()},
{‘params’: model.last_part.parameters(), ‘lr’: args.lr * 0.1}
], lr=args.lr)

train_dataset = TrainDataset(args.train_file)
train_dataloader = DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
eval_dataset = EvalDataset(args.eval_file)
eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)

best_weights = copy.deepcopy(model.state_dict())
best_epoch = 0
best_psnr = 0.0

for epoch in range(args.num_epochs):
model.train()
epoch_losses = AverageMeter()

with tqdm(total=(len(train_dataset) - len(train_dataset) % args.batch_size), ncols=80) as t:
t.set_description(‘epoch: {}/{}’.format(epoch, args.num_epochs - 1))

for data in train_dataloader:
inputs, labels = data

inputs = inputs.to(device)
labels = labels.to(device)

preds = model(inputs)

loss = criterion(preds, labels)

epoch_losses.update(loss.item(), len(inputs))

optimizer.zero_grad()
loss.backward()
optimizer.step()

t.set_postfix(loss=‘{:.6f}’.format(epoch_losses.avg))
t.update(len(inputs))

torch.save(model.state_dict(), os.path.join(args.outputsdir, ‘epoch{}.pth’.format(epoch)))

model.eval()
epoch_psnr = AverageMeter()

for data in eval_dataloader:
inputs, labels = data

inputs = inputs.to(device)
labels = labels.to(device)

with torch.no_grad():
preds = model(inputs).clamp(0.0, 1.0)

epoch_psnr.update(calc_psnr(preds, labels), len(inputs))

print(‘eval psnr: {:.2f}’.format(epoch_psnr.avg))

if epoch_psnr.avg > best_psnr:
best_epoch = epoch
best_psnr = epoch_psnr.avg
best_weights = copy.deepcopy(model.state_dict())

print(‘best epoch: {}, psnr: {:.2f}’.format(best_epoch, best_psnr))
torch.save(best_weights, os.path.join(args.outputs_dir, ‘best.pth’))

讯享网


讯享网

小讯
上一篇 2025-05-17 14:35
下一篇 2025-06-14 16:29

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/176547.html