
<font color="#000"><strong>【摘要】:</strong></font>为研究高速公路行程时间预测方法,基于梯度提升决策树(GBDT)建立了行程时间预测模型.提出的模型中选用11个变量(当前时段行程时间T_i、当前时段流量Q_i、当前时段速度V_i、当前时段密度K_i、当前时段车辆数N_i、当前时段占有率R_i、当前时段交通状态参数X_i、前一个时段行程时间T_(i-1)等)预测向前10 min的行程时间.利用VISSIM仿真得到的数据对模型进行训练和测试.结果表明,GBDT模型的预测误差小于BP神经网络模型和支持向量机模型;GBDT模型中当前时段行程时间T_i在所有变量中最重要.GBDT模型能够得到更准确的预测结果,能深入挖掘变量与预测行程时间之间隐藏的非线性关系.
讯享网

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/149738.html