最近在校事情不多,趁着还记得就开了个新坑 algorithms,把常用数据结构和算法总结了一下。每个算法都有 README.md 介绍算法的运行流程、GIF 演示、复杂度分析及适用场景;每种数据结构会介绍基本概念、操作和应用场景。
图这种数据结构是网状结构的抽象,现实生活中有很多例子,比如航班路线网络、社交网络等。关于图的节点、边、权值、有向无向和强弱连通性等基础概念可参考第一本书第八章。
对于上方的无向图,有两种常见的表示方法:
对于节点 u 指向节点 v 的边 ,可以表示为 ,不直接连接则为0。上图对应的邻接矩阵如下:

上图的矩阵完整描述了图的连接情况。由于是无向图,邻接矩阵相对主对角线是 对称的: 意味着 ,对应到代码实现,是一个二维数组或 map 结构。

对于每个节点,将与之直接连接的节点存储在表结构中,上图对应的邻接表如下:

上图中的箭头可表示有向图,在实现上可使用 slice 或链表存储连接节点。
根据图的 稠密程度 选择存储结构,假设图有 N 个节点 E 条边,若:
则为交叉少的稀疏图
使用邻接表存储只连接的节点,节省存储空间;使用邻接矩阵将要存储大量的 值,浪费空间。
则为交叉多的稠密图
使用邻接矩阵将十分方便的查询连通性,较少的浪费存储空间。邻接表将查找麻烦。
图有 2 个基本操作: 添加节点、 连接节点形成边。
讯享网
讯享网
测试成功:使用邻接表表示上边的无向图


BFS(Breadth First Search):广度优先搜索,广度指的是从一个节点开始 发散性地遍历 周围节点。从某个节点出发,访问它的所有邻接节点,再从这些节点出发,访问它们未被访问过得邻接节点…直到所有节点访问完毕。
有点类似树的层序遍历,但图存在成环的情形,访问过的节点可能会再次访问,所以需要用一个辅助队列来存放待访问的邻接节点。
- 选一节点入队列
- 节点出队列
- 若队列为空,则说明遍历完毕,直接返回
- 将节点的 所有未访问邻接节点 入队列
- 执行回调(可以是用于搜索的等值比较)
- 重复步骤 2
讯享网
测试成功:
- 先访问节点 1,再访问邻接 1 的 2 和 5,此时 1、2、5 均标记为已访问过
- 再遍历节点 2 未被访问过的邻接节点:3、4
- 此时所有节点都已被访问过,队列为空。遍历结束

时间复杂度
对于 N 个节点,E 条边的图,节点和每条边都会被遍历到一次。时间复杂度为 O(N + E)
空间复杂度
对于发散图,辅助队列最多会存放 N 个节点。空间复杂度为 O(N)
其实对于图的遍历有 2 种:BFS 和 DFS,前者使用辅助队列暂存节点,后者使用栈递归调用。二者各有优劣,比如 BFS 能控制队列长度,不像 DFS 那样不易控制栈的大小,DFS 适用于图和树的先序遍历,将放到树的章节学习。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/148617.html