1.随机微分方程求解:dX(t) =− αXtdt + σdWt
法一:Euler-Maruyama

讯享网
%% %O-U过程 %dX(t)=-alpha*Xt*dt+sigma*dWt,X|t=0=X0 %alpha=2,sigma=1,X0=1 % 设置初始参数 T = 1; % 时间区间长度 N = 1000; % 离散化的时间步数 dt = T/N; % 时间步长 X = zeros(1,N+1); % 存储解向量 X(1) = 1; % 初始条件 alpha = 2; sigma = 1; % 模拟数值解 for i = 1:N dW = sqrt(dt)*randn(); % 标准正态分布增量 X(i+1) = X(i) - alpha*X(i)*dt + sigma*dW; % 欧拉方法更新 end % 绘图 plot(linspace(0,T,N+1),X,'*-') % 根据时间步长将x轴离散化 xlabel('t') ylabel('X(t)') title('随机微分方程数值解') legend('Euler数值解')
讯享网

法二:Milstein


讯享网% 设置参数 alpha = 2; sigma = 1; X0 = 1; T = 1; N = 1000; dt = T/N; % 初始化向量和随机项 t = 0:dt:T; W = [0,cumsum(randn(1,N).*sqrt(dt))]; %使用cumsum函数生成一个与t等长的Wiener过程(随机项) % 初始化X X = zeros(1,N+1); X(1) = X0; % Milstein方法计算X for i = 1:N dW = W(i+1) - W(i); X(i+1) = X(i) - alpha*X(i)*dt + sigma*X(i)*dW ... + 0.5*sigma^2*X(i)*(dW^2-dt); %在Milstein方法中,我们需要对二次变差数进行估计 %因此在计算时需要添加正交项0.5*sigma^2*X(i)*(dW^2-dt) end % 绘制图形 plot(t,X,'*-') title('随机微分方程数值解') xlabel('t') ylabel('X(t)') legend('Milstein数值解')

2.受高斯白噪声激励的系统,FPK求解
考虑一个由下列方程支配的随机激励的单自由度振子:
X ¨ + h ( X , X ˙ ) = X W 1 ( t ) + X ˙ W 2 ( t ) + W 3 ( t ) \ddot{X}+h(X,\dot{X})=XW_{1}(t)+\dot XW_{2}(t)+W_{3}(t) X¨+h(X,X˙)=XW1(t)+X˙W2(t)+W3(t)
其中, h ( X , X ˙ ) h(X,\dot X) h(X,X˙)表示阻尼力和恢复力, W l ( t ) , l = 1 , 2 , 3 W_{l}(t),l=1,2,3 Wl(t),l=1,2,3是独立的高斯白噪声,其相关函数为 E [ W l ( t ) W s ( t + τ ) ] = 2 π K l s δ l s δ ( τ ) E[W_{l}(t)W_{s}(t+\tau)]=2\pi K_{ls} \delta_{ls}\delta(\tau) E[Wl(t)Ws(t+τ)]=2πKlsδlsδ(τ)
这里, δ l s \delta_{ls} δls与 δ ( τ ) \delta(\tau) δ(τ)不一样,前者是克罗内克(Kronecker) δ \delta δ,即 δ l s = 1 , l = s ; δ l s = 0 , l ≠ s . \delta_{ls}=1,l=s;\delta_{ls}=0,l\neq s. δls=1,l=s;δls=0,l=s., δ ( τ ) \delta(\tau) δ(τ)是狄拉克函数, δ = ∞ , τ = 0 ; δ = 0 , τ ≠ 0. \delta=\infty, \tau=0;\delta=0,\tau \neq 0. δ=∞,τ=0;δ=0,τ=0.
记 X 1 = X , X 2 = X ˙ X_{1}=X,X_{2}=\dot{X} X1=X,X2=X˙可转换状态空间的两个方程
X ˙ 1 = X 2 \dot{X}_{1}=X_{2} X˙1=X2
X ˙ 2 = − h ( X 1 , X 2 ) + X 1 W 1 ( t ) + X 2 W 2 ( t ) + W 3 ( t ) \dot{X}_{2}=-h(X_{1},X_{2})+X_{1}W_{1}(t)+X_{2}W_{2}(t)+W_{3}(t) X˙2=−h(X1,X2)+X1W1(t)+X2W2(t)+W3(t)
对于 d d t X ( t ) = f ( X , t ) + g ( X , t ) W ( t ) \frac{d}{dt}X(t)=f(X,t)+g(X,t)W(t) dtdX(t)=f(X,t)+g(X,t)W(t)
相应的FPK方程为 ∂ ∂ t p + ∑ j = 1 n ∂ ∂ x j ( a j p ) − 1 2 ∑ j , k = 1 n ∂ 2 ∂ x j ∂ x k ( b j k p ) = 0 \frac{\partial }{\partial t}p+\sum_{j=1}^{n}\frac{\partial }{\partial x _{j}}(a_{j}p)-\frac{1}{2}\sum_{j,k=1}^{n}\frac{\partial ^{2}}{\partial x_{j}\partial x_{k}}(b_{jk}p)=0 ∂t∂p+∑j=1n∂xj∂(ajp)−21∑j,k=1n∂xj∂xk∂2(bjkp)=0
其中,一、二阶导数矩为 a j ( x , t ) = f j ( x , t ) + π ∑ r = 1 n ∑ l , s = 1 m K l s g r s ( x , t ) ∂ ∂ x r g j l ( x , t ) a_{j}(\mathbf{x},t)=f_{j}(\mathbf{x},t)+\pi\sum_{r=1}^{n}\sum_{l,s=1}^{m}K_{ls}g_{rs}(\mathbf{x},t)\frac{\partial }{\partial x_{r}}g_{jl}(\mathbf{x},t) aj(x,t)=fj(x,t)+π∑r=1n∑l,s=1mKlsgrs(x,t)∂xr∂gjl(x,t),
b j k ( x , t ) = 2 π ∑ l , s = 1 m K l s g j l ( x , t ) g k s ( x , t ) b_{jk}(\mathbf{x},t)=2\pi\sum_{l,s=1}^{m}K_{ls}g_{jl}(\mathbf{x},t)g_{ks}(\mathbf{x},t) bjk(x,t)=2π∑l,s=1mKlsgjl(x,t)gks(x,t)
由此可以得出, f 1 = x 2 , f 2 = − h ( x 1 , x 2 ) f_{1}=x_{2},f_{2}=-h(x_{1},x_{2}) f1=x2,f2=−h(x1,x2), g 1 j = 0 ( j = 1 , 2 , 3 ) g_{1j}=0(j=1,2,3) g1j=0(j=1,2,3)
g 21 = x 1 , g 22 = x 2 , g 23 = 1 g_{21}=x_{1},g_{22}=x_{2},g_{23}=1 g21=x1,g22=x2,g23=1, n = 2 , m = 3 n=2,m=3 n=2,m=3.
则一、二阶导数矩:
a 1 = x 2 , a 2 = − h ( x 1 , x 2 ) + π K 22 x 2 a_{1}=x_{2},a_{2}=-h(x_{1},x_{2})+\pi K_{22}x_{2} a1=x2,a2=−h(x1,x2)+πK22x2
b 11 = 0 , b 12 = 0 , b 21 = 0. b 22 = 2 π K 11 x 1 2 + 2 π K 22 x 2 2 + 2 π K 33 . b_{11}=0,b_{12}=0,b_{21}=0.b_{22}=2\pi K_{11}x_{1}^{2}+2\pi K_{22}x_{2}^{2}+2\pi K_{33}. b11=0,b12=0,b21=0.b22=2πK11x12+2πK22x22+2πK33.
从而得到FPK方程:
∂ ∂ t p + ∂ ∂ x 1 ( x 2 p ) + ∂ ∂ x 2 { [ ( − h ( x 1 , x 2 + π K 22 x 2 ] p } − π ∂ 2 ∂ x 2 2 [ ( K 11 x 1 2 + K 22 x 2 2 + K 33 ) p ] = 0 \frac{\partial}{\partial t}p+\frac{\partial}{\partial x_{1}}(x_{2}p)+\frac{\partial}{\partial x_{2}}\left \{ [(-h(x_{1},x_{2}+\pi K_{22}x_{2}]p \right \}-\pi \frac{\partial ^{2}}{\partial x_{2}^{2}}[(K_{11}x_{1}^{2}+K_{22}x_{2}^{2}+K_{33})p]=0 ∂t∂p+∂x1∂(x2p)+∂x2∂{
[(−h(x1,x2+πK22x2]p}−π∂x22∂2[(K11x12+K22x22+K33)p]=0.
相应的也可以得到Stratonovich或Ito方程,它们得到的FPK方程都和上式一致。


3.绘制随机微分方程概率密度曲线

%(b) clc;clear; % 定义需要绘制的变量和参数 t_values = linspace(0.01, 5, 100); % 在t轴上均匀采样100个点,保证不会出现除数为0的情况 x_values = linspace(-5, 5, 200); % 在x轴上均匀采样200个点 [x_mesh, t_mesh] = meshgrid(x_values, t_values); % 创建网格 % 计算概率密度函数 p = (1./sqrt(2*pi.*t_mesh)).*cosh(x_mesh).*exp(-0.5./t_mesh).*exp(-(x_mesh.^2)./(2*t_mesh)); % 绘制演化图 mesh(x_mesh, t_mesh, p); % 使用surf函数绘制三维曲面图 xlabel('x'); ylabel('t'); zlabel('p(x,t)'); % 添加轴标签 title('Probability Density Evolution'); % 添加标题

fortran中设置感兴趣区间[-5,5],时间间隔0.01,分胞数50,跑1万条轨迹,每个迭代500次后得到如下结果:


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/11525.html