| Family | Members | Subfamily (genes) | Main function |
|---|---|---|---|
| CYP1 | 3 subfamilies, 3 genes1 pseudogene | A (CYP1A1, CYP1A2), B (CYP1B1) | Xenobiotic and steroid (including estrogen) metabolism |
| CYP2 | 13 subfamilies, 16 genes 16 pseudogenes |
A (CYP2A6, CYP2A7, CYP2A13), B (CYP2B6), C (CYP2C8, CYP2C9, CYP2C18, CYP2C19), D (CYP2D6), E (CYP2E1), F (CYP2F1), J (CYP2J2), R (CYP2R1), S (CYP2S1), U (CYP2U1), W (CYP2W1) | Xenobiotic and steroid metabolism |
| CYP3 | 1 subfamiliy, 4 genes 2 pseudogenes |
A (CYP3A4, CYP3A5, CYP3A7, CYP3A43) | Xenobiotic and steroid (including ************) metabolism |
| CYP4 | 6 subfamilies, 12 genes 10 pseudogenes |
A (CYP4A11, CYP4A22), B (CYP4B1), F (CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22), V (CYP4V2), X (CYP4X1), Z (CYP4Z1) | Fatty acid, arachidonic acid, and leukotriene metabolism |
| CYP5 | 1 subfamiliy, 1 gene | A (CYP5A1) | Thromboxane A2 synthesis |
| CYP7 | 2 subfamilies, 2 genes | A (CYP7A1), B (CYP7B1) | Bile acid synthesis |
| CYP8 | 2 subfamilies, 2 genes | A (CYP8A1), B (CYP8B1) | Prostacyclin syntehsis, bile acid syntehsis |
| CYP11 | 2 subfamilies, 3 genes | A (CYP11A1), B (CYP11B1, CYP11B2) | Steroid synthesis |
| CYP17 | 1 subfamiliy, 1 gene | A (CYP17A1), B (CYP17B1) | Steroid synthesis |
| CYP19 | 1 subfamiliy, 1 gene | A (CYP19A1) | Steroid synthesis |
| CYP20 | 1 subfamiliy, 1 gene | A (CYP20A1) | Unknown |
| CYP21 | 2 subfamilies, 1 gene 1 pseudogene |
A (CYP21A2) | Steroid synthesis |
| CYP24 | 1 subfamiliy, 1 gene | A (CYP24A1) | Vitamin D metabolism |
| CYP26 | 3 subfamilies, 3 genes | A (CYP26A1), B (CYP26B1), C (CYP26C1) | Vitamin A metabolism |
| CYP27 | 3 subfamilies, 3 genes | A (CYP27A1), B (CYP27B1), C (CYP27C1) | Vitamin D and bile acid synthesis |
| CYP39 | 1 subfamiliy, 1 gene | A (CYP39A1) | Bile acid synthesis |
| CYP46 | 1 subfamiliy, 1 gene | A (CYP46A1) | Cholesterol synthesis |
| CYP51 | 1 subfamiliy, 1 gene | A (CYP51A1) | Cholesterol synthesis |
CYP酶在PUFAs中的作用-哺乳动物长链 n-6 和 n-3 多不饱和脂肪酸 (PUFA) 的生物合成途径。
花生四烯酸(AA)的生物活化。生理活性AA代谢物的产生由环氧合酶(COX),脂氧合酶(LOX)和细胞色素P450(CYP)酶启动。

n-6多不饱和脂肪酸的细胞色素P450(CYP)依赖性代谢。所描述的结构式是各个CYP亚型以区域和立体选择性方式产生的各种环氧和羟基代谢物的例子。环氧代谢物通过可溶性环氧化物水解酶(sEH)水解为相应的邻二醇


细胞色素 P450 (CYP) 依赖性 n−3 多不饱和脂肪酸的代谢。与它们的n-6对应物类似,n-3多不饱和脂肪酸主要通过羟基化和环氧化代谢,如所选代谢物的结构式所示。如文中详细描述,ω-3 双键为许多不同的 CYP 亚型提供了首选的环氧化位点。环氧代谢物通过可溶性环氧化物水解酶(sEH)水解为相应的邻二醇。

参考文献
Song YS, Annalora AJ, Marcus CB, Jefcoate CR, Sorenson CM, Sheibani N. Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress. Cells. 2022 Sep 20;11(19):2930. doi: 10.3390/cellsIF: 6.0 Q2 . PMID: ; PMCID: PMC.
Konkel A, Schunck WH. Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochim Biophys Acta. 2011 Jan;1814(1):210-22. doi: 10.1016/j.bbapap.2010.09.009. Epub 2010 Sep 30. PMID: .

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/47071.html