2025年resnet模型(ResNet模型)

resnet模型(ResNet模型)好的 您想把自定义的 CNN 模型 改为 ResNet 模型 这是可以实现的 ResNet 是一种深度卷积神经网络 它通过引入残差连接 Residual Connection 来解决深度网络训练中的梯度消失问题 以下是将自定义 CNN 模型 改为 ResNet 模型 的步骤 导入必要的库 import torch import torch nn as nn import torch nn

大家好,我是讯享网,很高兴认识大家。

好的,您想把自定义的CNN模型改为ResNet模型,这是可以实现的。ResNet是一种深度卷积神经网络,它通过引入残差连接(Residual Connection)来解决深度网络训练中的梯度消失问题。以下是将自定义CNN模型改为ResNet模型的步骤:

  1. 导入必要的库
import torch import torch.nn as nn import torch.nn.functional as F 

讯享网
  1. 定义ResNet模型
讯享网class <em>ResNet</em>(nn.Module): def __init__(self): super(<em>ResNet</em>, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * 1 * 1, 10) def _make_layer(self, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes), ) layers = [] layers.append(BasicBlock(self.inplanes, planes, stride, downsample)) self.inplanes = planes for _ in range(1, blocks): layers.append(BasicBlock(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x 
  1. 定义ResNet中的BasicBlock
class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out 

这里定义的ResNet模型包含4个layer,每个layer中包含多个BasicBlock。BasicBlock是ResNet中的基本模块,它通过残差连接将输入直接加到输出中,从而避免了梯度消失的问题。


讯享网

  1. 实例化ResNet模型
讯享网model = <em>ResNet</em>() 

这样就完成了自定义的CNN模型ResNet模型的转换。如果您需要训练这个模型,可以使用PyTorch提供的训练框架进行训练。


小讯
上一篇 2025-05-12 15:36
下一篇 2025-06-09 08:01

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/207396.html