特征工程实例(特征工程实例分析)

特征工程实例(特征工程实例分析)p id 35585QEF 弹性网络回归 Elastic Net Regression 是一种结合了岭回归 Ridge Regression 和 Lasso 回归 Least Absolute Shrinkage and Selection Operator Regression 优点的机器学习算法 p

大家好,我是讯享网,很高兴认识大家。




讯享网

 <p id="35585QEF">弹性网络回归(Elastic Net Regression)是一种结合了岭回归(Ridge Regression)和Lasso回归(Least Absolute Shrinkage and Selection Operator Regression)优点的机器学习算法。它通过在损失函数中同时引入L1和L2正则化项来约束模型的复杂度,从而提高模型的鲁棒性和泛化能力。</p><p id="35585QEG">弹性网络回归的公式如下:</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1104%2Fbec06a3bj00smf8vc0017d000pg00bjm.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="35585QEI"><strong>主要特点:</strong></p><p><ol><li id="35585QEV">结合L1和L2正则化:弹性网络回归在损失函数中加入了L1和L2正则化项,其中L1正则化有助于特征选择,L2正则化有助于处理特征间的多重共线性问题。</li><li id="35585QF0">参数灵活性:通过调整正则化参数α和混合参数ρ,可以在Lasso回归和岭回归之间进行平滑过渡,平衡模型的稀疏性和稳定性。</li><li id="35585QF1">适用性广:适用于高维数据和具有多重共线性的特征,能够在存在高度相关的特征时保持稳定性,并减少模型的过拟合。</li></ol></p><p id="35585QEJ"><strong>使用场景:</strong></p><p><ul><li id="35585QF2">高维数据:当特征数量多于样本数量时,弹性网络回归能够有效地选择相关特征,避免过拟合。</li><li id="35585QF3">特征相关性:在特征之间存在高度相关性的情况下,弹性网络回归能够同时选择相关特征,提高模型的稳定性。</li><li id="35585QF4">防止过拟合:通过正则化项的引入,弹性网络回归能够有效地防止模型过拟合,提高模型的泛化能力。</li></ul></p><p id="35585QEK">弹性网络回归在金融、医学、工程、生态学和社会科学等多个领域都有广泛的应用。例如,在金融领域,它可以用来预测股票价格和汇率变动;在医学领域,它可以用来预测疾病风险和药物反应;在工程领域,它可以用来预测建筑物的结构稳定性和材料性能等。通过交叉验证等方法来选择合适的超参数α和ρ,可以进一步优化模型性能。</p><p id="35585QEL"><strong>案例分析:</strong></p><p id="35585QEM">工具地址:析易数据分析平台</p><p id="35585QEN">以肝硬化指数数据集为例,对所有数据(年龄,身高,性别,BMI,吸烟,饮酒,总胆固醇,甘油三脂,高密度脂蛋白,空腹葡萄糖,收缩压,舒张压,丙氨酸转氨酶(ALT),天冬氨酸转氨酶(AST),碱性磷酸酶(ALP))和肝硬化指标之间做弹性网络回归分析。</p><p id="35585QEO">步骤1:进入析易数据分析平台,在最左侧找到普通线性回归功能(机器学习→线性回归→弹性网络回归)</p><p id="35585QEP">步骤2:在最右侧的操作表单中,数据表选择年龄,身高,性别,BMI,吸烟,饮酒,总胆固醇,甘油三脂,高密度脂蛋白,空腹葡萄糖,收缩压,舒张压,丙氨酸转氨酶(ALT),天冬氨酸转氨酶(AST),碱性磷酸酶(ALP)为自变量;选择肝硬化指标为因变量,测试集拆分比例等按照默认数据(按照个人需求进行设置)。</p><p id="35585QEQ">步骤3:点击计算按钮,等待5-8秒,平台自动生成分析报告并保存模型。#析易#</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1104%2F3952e987j00smf8vd003cd0019z00l5m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1104%2F1517b782j00smf8vd0021d000zb00n6m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p> 

讯享网
小讯
上一篇 2025-05-27 18:31
下一篇 2025-05-15 09:02

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/203013.html