广度优先搜索树(广度优先搜索树是唯一的吗)

广度优先搜索树(广度优先搜索树是唯一的吗)一 二叉树深度优先 DFS 和广度优先 BFS 搜索算法 树的相关概念参见 1 深度优先搜索算法 Depth First Search 是搜索算法的一种 是沿着树的深度遍历树的节点 尽可能深的搜索树的分支 当节点 v 的所有边都己被探寻过 搜索将回溯到发现节点 v 的那条边的起始节点 这一过程一直进行到已发现从源节点可达的所有节点为止 如果还存在未被发现的节点

大家好,我是讯享网,很高兴认识大家。



一、二叉树深度优先(DFS)和广度优先(BFS)搜索算法

树的相关概念参见

(1)深度优先搜索算法(Depth First Search),是搜索算法的一种。是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。


讯享网

A 是第一个访问的,然后顺序是 B、D,然后是 E。接着再是 C、F、G。那么,怎么样才能来保证这个访问的顺序呢?分析一下,在遍历了根结点后,就开始遍历左子树,最后才是右子树。因此可以借助堆栈的数据结构,由于堆栈是后进先出的顺序,由此可以先将右子树压栈,然后再对左子树压栈,这样一来,左子树结点就存在了栈顶上,因此某结点的左子树能在它的右子树遍历之前被遍历。

深度优先遍历代码片段:

(2)广度优先搜索算法(Breadth First Search),又叫宽度优先搜索,或横向优先搜索。是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。

如下图所示的二叉树:

A 是第一个访问的,然后顺序是 B、C,然后再是 D、E、F、G。那么,怎样才能来保证这个访问的顺序呢?借助队列数据结构,由于队列是先进先出的顺序,因此可以先将左子树入队,然后再将右子树入队。这样一来,左子树结点就存在队头,可以先被访问到。

广度优先遍历代码片段:

二、图的深度优先(DFS)和广度优先(BFS)搜索算法

在介绍图的搜索之前,有必要先了解计算机中图的存储方式。图的存储表示方法很多,这里介绍两种最常用的方法。至于具体选择哪一种表示法,主要取决于具体的应用和欲施加的操作。为了适合用C语言描述,以下假定顶点序号从0开始,即图G的顶点集的一般形式是V(G)={v0,vi,…,Vn-1}。
(1)图的邻接矩阵表示法
1.图的邻接矩阵表示法
     

在图的邻接矩阵表示法中:  

  ① 用邻接矩阵表示顶点间的相邻关系  

  ② 用一个顺序表来存储顶点信息

2.图的邻接矩阵(Adacency Matrix)      

设G=(V,E)是具有n个顶点的图,则G的邻接矩阵是具有如下性质的n阶方阵:   

   
【例】下图中无向图G5和有向图G6的邻接矩阵分别为Al和A2

   

3.网络的邻接矩阵      

若G是网络,则邻接矩阵可定义为:    

        
其中:      

  wij表示边上的权值;      

  ∞表示一个计算机允许的、大于所有边上权值的数。

【例】下面带权图的两种邻接矩阵分别为A3和A4


       
4.图的邻接矩阵存储结构形式说明   

注意:     

  ① 在简单应用中,可直接用二维数组作为图的邻接矩阵(顶点表及顶点数等均可省略)。      

  ② 当邻接矩阵中的元素仅表示相应的边是否存在时,EdgeTyPe可定义为值为0和1的枚举类型。      

  ③ 无向图的邻接矩阵是对称矩阵,对规模特大的邻接矩阵可压缩存储。      

  ④ 邻接矩阵表示法的空间复杂度S(n)=0(n2)。

5.建立无向网络的算法。

该算法的执行时间是0(n+n2+e)。由于e<n2,算法的时间复杂度是0(n2)。

(2)图的邻接表表示法
  图的邻接表表示法类似于树的孩子链表表示法。对于图G中的每个顶点vi,该方法把所有邻接于vi的顶点vj链成一个带头结点的单链表,这个单链表就称为顶点vi的邻接表(Adjacency
List)。
1. 邻接表的结点结构
(1)表结点结构

邻接表中每个表结点均有两个域:
  ① 邻接点域adjvex:存放与vi相邻接的顶点vj的序号j。
  ② 链域next:将邻接表的所有表结点链在一起。
注意:若要表示边上的信息(如权值),则在表结点中还应增加一个数据域。

(2)头结点结构

顶点vi邻接表的头结点包含两个域:
  ① 顶点域vertex:存放顶点vi的信息
  ② 指针域firstedge:vi的邻接表的头指针。

注意:
   ① 为了便于随机访问任一顶点的邻接表,将所有头结点顺序存储在一个向量中就构成了图的邻接表表示。
     ② 有时希望增加对图的顶点数及边数等属性的描述,可将邻接表和这些属性放在一起来描述图的存储结构。
2.无向图的邻接表

  对于无向图,vi的邻接表中每个表结点都对应于与vi相关联的一条边。因此,将邻接表的表头向量称为顶点表。将无向图的邻接表称为边表。
【例】对于无向图G5,其邻接表表示如下面所示,其中顶点v0的边表上三个表结点中的顶点序号分别为1、2和3,它们分别表示关联于v0的三条边(v0,v1),(v0,v2)和(v0,v3)。

注意:n个顶点e条边的无向图的邻接表表示中有n个顶点表结点和2e个边表结点。
3.有向图的邻接表
  对于有向图,vi的邻接表中每个表结点都对应于以vi为始点射出的一条边。因此,将有向图的邻接表称为出边表。
【例】有向图G6的邻接表表示如下面(a)图所示,其中顶点v1的邻接表上两个表结点中的顶点序号分别为0和4,它们分别表示从v1射出的两条边(简称为v1的出边):<v1,v0>和<v1,v4>。

注意:n个顶点e条边的有向图,它的邻接表表示中有n个顶点表结点和e个边表结点。
4.有向图的逆邻接表
在有向图中,为图中每个顶点vi建立一个入边表的方法称逆邻接表表示法。
入边表中的每个表结点均对应一条以vi为终点(即射入vi)的边。
【例】G6的逆邻表如上面(b)图所示,其中v0的人边表上两个表结点1和3分别表示射人v0的两条边(简称为v0的入边):<v1,v0>和<v3,v0>。
注意:n个顶点e条边的有向图,它的接表表示中有n个顶点表结点和e个边表结点。

(2)建立无向图的邻接表算法

该算法的时间复杂度是O(n+e)。
注意:

  ①建立有向图的邻接表更简单,每当读人一个顶点对序号<i,j>时,仅需生成一个邻接序号为j的边表结点,将其插入到vj的出边表头部即可。
  ② 建立网络的邻接表时,需在边表的每个结点中增加一个存储边上权的数据域。

(3)图的遍历

深度优先遍历(Depth-First Traversal)

1.图的深度优先遍历的递归定义

2、深度优先搜索的过程
     设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。

3、深度优先遍历的递归算法

4、算法分析
  对于具有n个顶点和e条边的无向图或有向图,遍历算法DFSTraverse对图中每顶点至多调用一次DFS或DFSM。从DFSTraverse中调用DFS(或DFSM)及DFS(或DFSM)内部递归调用自己的总次数为n。
  当访问某顶点vi时,DFS(或DFSM)的时间主要耗费在从该顶点出发搜索它的所有邻接点上。用邻接矩阵表示图时,其搜索时间为O(n);用邻接表表示图时,需搜索第i个边表上的所有结点。因此,对所有n个顶点访问,在邻接矩阵上共需检查n2个矩阵元素,在邻接表上需将边表中所有O(e)个结点检查一遍。
所以,DFSTraverse的时间复杂度为O(n2) (调用DFSM)或0(n+e)(调用DFS)。

5、深度优先遍历的非递归算法

广度优先遍历(Breadth-FirstTraversal)

1、广度优先遍历的递归定义      

设图G的初态是所有顶点均未访问过。在G中任选一顶点v为源点,则广度优先遍历可以定义为:首先访问出发点v,接着依次访问v的所有邻接点w1,w2,…,wt,然后再依次访问与wl,w2,…,wt邻接的所有未曾访问过的顶点。依此类推,直至图中所有和源点v有路径相通的顶点都已访问到为止。此时从v开始的搜索过程结束。      

若G是连通图,则遍历完成;否则,在图C中另选一个尚未访问的顶点作为新源点继续上述的搜索过程,直至G中所有顶点均已被访问为止。      

广度优先遍历类似于树的按层次遍历。采用的搜索方法的特点是尽可能先对横向进行搜索,故称其为广度优先搜索(Breadth-FirstSearch)。相应的遍历也就自然地称为广度优先遍历。

2、广度优先搜索过程     

在广度优先搜索过程中,设x和y是两个相继要被访问的未访问过的顶点。它们的邻接点分别记为x1,x2,…,xs和y1,y2,…,yt。      

为确保先访问的顶点其邻接点亦先被访问,在搜索过程中使用FIFO队列来保存已访问过的顶点。当访问x和y时,这两个顶点相继入队。此后,当x和y相继出队时,我们分别从x和y出发搜索其邻接点x1,x2,…,xs和y1,y2,…,yt,对其中未访者进行访问并将其人队。这种方法是将每个已访问的顶点人队,故保证了每个顶点至多只有一次人队。

3、广度优先搜索算法

4、算法分析
 对于具有n个顶点和e条边的无向图或有向图,每个顶点均入队一次。广度优先遍历(BFSTraverse)图的时间复杂度和DFSTraverse算法相同。
 当图是连通图时,BFSTraverse算法只需调用一次BFS或BFSM即可完成遍历操作,此时BFS和BFSM的时间复杂度分别为O(n+e)和0(n2)。

&nbsp;

&nbsp;【参考】http://sjjp.tjuci.edu.cn/sjjg/DataStructure/DS/web/tu/tu7.1.1.htm

&nbsp;

小讯
上一篇 2025-05-26 15:11
下一篇 2025-05-11 10:02

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/189987.html