resnet18网络结构4个大残差快(resnet残差网络代码)

resnet18网络结构4个大残差快(resnet残差网络代码)p 2015 顶峰 何凯明 p from streamlit testing v1 element tree import SpecialBlock from torch import nn from torch testing internal common nn import output size def CommonBlock param

大家好,我是讯享网,很高兴认识大家。



 <p>2015顶峰 何凯明</p> 

讯享网


讯享网

讯享网from streamlit.testing.v1.element_tree import SpecialBlock from torch import nn from torch.testing._internal.common_nn import output_size def CommonBlock(param, param1, param2): 
pass 
def SpecialBlockBlock(param, param1, param2):
讯享网pass 
class ResNet18(nn.Module):
def __init__(self,classes_num): super(ResNet18,self).__init__() self.prepare &#61; nn.Sequential( nn.Conv2d(3,64,7,2,3), nn.BatchNorm2d(64), nn.BatchNorm2d(64), nn.ReLU(inplace&#61;True), nn.MaxPool2d(3,2,1) ) self.layer1 &#61; nn.Sequential( CommonBlock(64,64,1), CommonBlock(64,64,1) 
)
讯享网 self.layer2 &#61; nn.Sequential( SpecialBlockBlock(64,128,[2,1]), CommonBlock(64,128,1) 
)
 self.layer3 &#61; nn.Sequential( SpecialBlock(128,256,[2,1]), CommonBlock(256,256,1) 
)
讯享网 self.layer4 &#61; nn.Sequential( SpecialBlock(256,512,[2,1]), CommonBlock(512,512,1) 
)
 self.pool &#61; nn.AdaptiveAvgPool2d(output_size) self.fc &#61; nn.Sequential( # nn.Dropout(p&#61;0.5), # nn.Linear(512,256), # nn.ReLU(inplace&#61;True), # nn.Dropout(p&#61;0.5), nn.Linear(512,classes_num) 
) def forward(self,x):
讯享网x &#61; self.prepare(x) x &#61; self.layer1(x) x &#61; self.layer2(x) x &#61; self.layer3(x) x &#61; self.pool(x) x &#61; x.reshape(x.shape[0],-1) x &#61; self.fc(x) return x</pre> 
小讯
上一篇 2025-05-30 20:50
下一篇 2025-06-11 07:29

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/185175.html