
<p id="35ALAE40">过去三十多年,从Linux到KVM,从OpenStack到Kubernetes,IT领域众多关键技术都来自开源。开源技术不仅大幅降低了IT成本,也降低了企业技术创新的门槛。</p><p id="35ALAE42">那么,在生成式AI时代,开源能够为AI带来什么?</p><p id="35ALAE44">红帽的答案是:<strong>开源技术将推动AI更快、更广泛的应用到各行各业中。</strong></p><p id="35ALAE46">自1993年成立至今,红帽一直是坚定的开源技术布道者和构建者。透过不久前的2024红帽论坛,「智能进化论」看到了开源技术与AI碰撞的三大关键词:简单的AI、开源的AI、混合的AI。</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1106%2Fafb1bd99j00smj4xw002wd000u000g7m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p><h5>简单的AI:从一台Laptop开启的企业AI应用之旅</h5></p><p id="35ALAE49">2024年9月,AI 托管平台 Hugging Face 宣布其收录的 AI 模型数量已突破 100 万个,足以证明生成式AI与大模型的火爆。</p><p id="35ALAE4B">但是从通用的基础模型,到解决不同企业实际业务问题之间,仍有不小的距离。算力、人才、模型训练平台和工具、技术经验都是大模型落地过程中的普遍痛点。比如:</p><p id="35ALAE4D">“能不能让基础模型使用企业自己的数据,在我选择的环境里做调优,同时只需要花费相对较小的投入?”</p><p id="35ALAE4F">“我们想基于基础模型开发适配自身业务的小模型,但是团队没有AI开发经验,没有开发平台,甚至没有足够的GPU算力资源怎么开始?”</p><p id="35ALAE4H">正如过去数年间,红帽通过RHEL 和 OpenShift,将Linux 和容器技术加速普及一样,<strong>用开源的方式将AI引入企业,也是AI时代红帽的愿景。</strong></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1106%2F785e92b7j00smj4xw001wd000u000k0m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="35ALAE4J">为此,红帽推出了一系列AI平台和产品,组成了企业AI应用三步曲:</p><p id="35ALAE4L"><strong>第一步,借助Podman Desktop和InstructLab,用户可以在最小资源配置下试用开源AI模型和工具,比如在笔记本电脑上用CPU试跑AI模型,而不需要额外的GPU卡。</strong></p><p id="35ALAE4N">过去,很多人认为AI模型的训练不可能在一台PC上完成,必须在配备GPU卡的大型数据中心完成。红帽彻底改变了这一现实,同时也让没有IT开发经验的数据科学家和业务人员都可以参与到AI模型训练中。</p><p id="35ALAE4P">借助 Podman AI Lab 扩展包,Podman Desktop可以让用户在本地环境中构建、测试和运行基础模型。只需完成几个步骤即可设置试验环境,用来试用不同的基础模型。</p><p id="35ALAE4R">InstructLab是一款用于基础模型对齐的开源工具,它可以帮你从开源社区把需要的基础模型下载到本地进行训练,并大幅降低了模型微调的数据准备和技术门槛。</p><p id="35ALAE4T"><strong>第二步,通过Red Hat Enterprise Linux AI(RHEL AI),在云端服务器上进一步训练模型。</strong></p><p id="35ALAE4V">如果第一步测试效果满意,用户就可以在云端服务器上进行生产级的模型训练。</p><p id="35ALAE51">RHEL AI是一个基础模型平台,它使用户能够更加便捷地开发、测试和部署生成式AI模型。</p><p id="35ALAE53">RHEL AI中整合了IBM研究院的开源授权大模型Granite、模型对齐工具InstructLab,以及包括英伟达、英特尔和AMD的GPU加速器。该解决方案被封装成一个优化的、可启动的RHEL镜像,用于在混合云环境中部署单个服务器,并已集成到OpenShift AI中。</p><p id="35ALAE55"><strong>第三步,通过OpenShift AI,在更大规模的分布式集群中进行生产级别的模型训练和部署。</strong></p><p id="35ALAE57">如果在前面两个环节中,模型都收获了满意的效果,就可以通过更大规模的分布式集群投入生产环境。</p><p id="35ALAE59">OpenShift AI是红帽的混合机器学习运营(MLOps)平台,能够在分布式集群环境中大规模运行模型和InstructLab,可以支撑大型团队完成ML Ops的工作流程。而且,OpenShift AI支持跨云混合部署,支持本地数据中心、私有云、公有云、混合云等多种环境。</p><p id="35ALAE5B">在三步曲之外,红帽还推出了丰富的AI赋能产品,比如Red Hat Lightspeed通过集成生成式人工智能(GenAI),为初学者和专家提供更顺畅的工作体验。将Red Hat Lightspeed应用于RHEL AI、OpenShift AI,用户可以通过自然语言的方式管理操作系统、容器平台甚至集群。</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1106%2Ff217f93dj00smj4xw0019d000u000g6m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p><h5>开源的AI:用开源社区推动大模型迭代</h5></p><p id="35ALAE5E">“你可以随处选择运行 AI 的位置,而且它将基于开源。”在2024年5月的红帽全球峰会上,红帽CEO Matt Hicks曾这样表示。</p><p id="35ALAE5G">可以说,开源开放的理念,贯穿了红帽所有的AI产品与战略。</p><p id="35ALAE5I">InstructLab就是一个典型的例子。<strong>InstructLab既是模型对齐的工具,也是一个开源社区,它开创了一种通过开源社区推动开源模型持续进步的新模式。</strong></p><p id="35ALAE5K">“红帽设计InstructLab有两个主要目的:第一,让客户基于Granite基础模型,使用InstructLab和自身数据训练出符合需求的模型。第二,我们邀请用户更进一步,将知识和技能反馈至上游的开源社区,将其整合到社区版本的Granite模型中。因此,InstructLab是连接社区和客户的桥梁。”红帽大中华区解决方案架构部高级总监王慧慧表示。</p><p id="35ALAE5M">同时,在推动AI落地方面,开放共创是红帽坚守的理念。</p><p id="35ALAE5O">“在AI应用落地方面,红帽引入了<strong>‘开放实验室’</strong>的概念,与客户的顾问团队合作,针对企业的研发、生产、市场行销和客户支持等环节,一起找出最具效能的应用场景。从一个小应用成功起步,再逐步扩展至更大的场景。”红帽全球副总裁兼大中华区总裁曹衡康表示。</p><p id="35ALAE5Q">“关于AI最后一公里的落地,红帽今年加速了与本土ISV及方案开发商的合作,以满足不同行业和企业的个性化需求。”红帽大中华区资深市场总监赵文斌表示。</p><p id="35ALAE5S">自今年5月发布全栈AI产品以来,红帽AI系列产品在国内市场加速落地。作为红帽AI产品的首批客户之一,国内某保险行业企业在引入红帽的AI产品后,其代码合并和审查的准确率大大提升,显著提升了开发效率与客户满意度。</p><p id="35ALAE5U"><strong>“去年红帽大中华区业务创下了历史新高,今年也继续以双位数增长。我们的增长来自于越来越多的企业选择开源技术,认识到开源的优势。”</strong>曹衡康表示。</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1106%2F8cc0f0d7j00smj4xw001vd000u000k0m.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="35ALAE60">红帽全球副总裁兼大中华区总裁 曹衡康</p><p><h5>混合的AI:企业发展自主AI的必然选择</h5></p><p id="35ALAE63">云计算时代,企业根据不同的业务负载可以灵活选择裸金属、公有云、私有云、混合云、专属云等多种部署方式。</p><p id="35ALAE65">正如云是混合的,AI也是混合的。</p><p id="35ALAE67">随着生成式AI技术的不断成熟,越来越多企业意识到,没有一款基础模型可以做到一家独大。企业根据不同业务选择最适合的模型将成为一种趋势,多个业务场景对应多个模型将成为常态。</p><p id="35ALAE69">从这个层面看,<strong>生成式AI时代也是混合AI时代。</strong>自2013年发布开放混合云战略以来,这种跨开放混合云的能力正是红帽的优势所在,其也将在AI时代进一步延续。</p><p id="35ALAE6B">红帽OpenShift 产品线经理佟一舟介绍了一个金融行业客户的案例。该企业在大模型出现之前就拥有丰富的ML小模型开发实力。然而在构建生成式AI研发、生产、实施平台的时候,该企业果断选择了红帽。</p><p id="35ALAE6D">一方面,大模型时代构建AI平台的难度和复杂度与小模型时代不可同日而语。另一方面,在多模型的混合场景下,企业需要找到一个中立的AI平台作为合作伙伴,才能避免被单一厂商绑定的风险。</p><p id="35ALAE6F">“很多客户希望AI平台企业能够稳定为他们提供未来10年的服务,而目前很多底层技术都来自开源技术。红帽30年的开源积淀,正是很多客户看中的关键优势。”佟一舟表示。</p><p><h5>结语</h5></p><p id="35ALAE6I">在生成式AI的时代浪潮中,开源技术正以其独特的魅力和强大的推动力,为AI的广泛应用铺设了一条坚实的道路。</p><p id="35ALAE6K">开源与AI的碰撞,不仅降低了AI落地的门槛,更让企业拥有了更多的自主权和选择空间。</p><p id="35ALAE6M">文中图片来自摄图网</p><p id="35ALAE6P">本文为「智能进化论」原创作品。</p>
讯享网

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/164457.html