pytorch模型部署到树莓派(树莓派pytorch加速)

pytorch模型部署到树莓派(树莓派pytorch加速)前一篇博客介绍了树莓派上 tensorflow 的配置 这里再配置下 pytorch 主要还是通过已经编译好的 whl 来安装 其实我们平时直接 pip install 安装也是先从权威源网站上下载别人编译好的针对某种平台的安装包来安装的 如果需要源码安装 可以参考博主的其它博客 通过交叉编译来在树莓派上来配置 当然这里是其它的库

大家好,我是讯享网,很高兴认识大家。



前一篇博客介绍了树莓派上tensorflow的配置,这里再配置下pytorch,主要还是通过已经编译好的whl来安装,其实我们平时直接pip install安装也是先从权威源网站上下载别人编译好的针对某种平台的安装包来安装的。如果需要源码安装,可以参考博主的其它博客(通过交叉编译来在树莓派上来配置,当然这里是其它的库)

Ubuntu下交叉编译OpenCV(WITH_QT)_竹叶青lvye的博客

如下一篇是博主在windows x64平台上源码编译的tensorflow,方法可供借鉴。

win7下VS2015编译tensorflow源码教程(在线和离线)及调用配置_竹叶青lvye的博客-

后续有精力,博主会来源码交叉编译安装下tensorflow及pytorch(直接在树莓派上编译花费太多时间,可以在别的平台上交叉编译好,然后将生成的库拷贝到site-packages文件夹下)。

1.配置好python环境

这里选择python3.7版本,树莓派上安装python3.7可参考博主之前博客

 树莓派4B上多版本python切换(一)_竹叶青lvye的博客-

 注意,如下此处安装和上面帖子不一样,之前编译静态库的命令语句如下:

树莓派上pytorch处理加速 树莓派 pytorch_树莓派4B
讯享网

这里需要编译动态库,所以命令语句,suo https://blog.51cto.com/u_/configure –prefix=/home/pi/python3.7应改为

其它两条命令还是同前。

完毕后,记得在.~/.bashrc中添加下环境变量

记得编辑好后执行下命令语句:source ~/.bashrc

同时注意,cd到编译获得的python3.7/lib目录下,执行下命令语句:

树莓派上pytorch处理加速 树莓派 pytorch_树莓派上pytorch处理加速_02

不然执行一些安装命令时,会出现报错:

After this operation, 1,861 kB of additional disk space will be used.
/usr/bin/python3: error while loading shared libraries: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory
E: Sub-process /usr/bin/apt-listchanges –apt || test \(? -lt 10 returned an error code (1)<br> E: Failure running script /usr/bin/apt-listchanges --apt || test \)? -lt 10

2.安装numpy,博主这里安装的是如下版本

树莓派上pytorch处理加速 树莓派 pytorch_python_03

3.分别下载pytorch、torchvision、torchaudio

这里需要结合自己树莓派的具体硬件情况来分析。

树莓派上pytorch处理加速 树莓派 pytorch_python_04

可看到博主的树莓派架构师armv71,然后如下网址

https://torch.kmtea.eu/whl/stable.html

树莓派上pytorch处理加速 树莓派 pytorch_Raspberry Pi 4B_05

https://torch.kmtea.eu/whl/stable.html

博主下载的版本如下,这里和之前博客(当时是在在PC ubuntu20.04下)里的版本是一致的,可参考博客

使用Pytorch自带模型预测图片_竹叶青lvye的博客-

树莓派上pytorch处理加速 树莓派 pytorch_pytorch_06

4.安装

分别执行如下命令语句进行安装

安装完毕后在对应python环境下import库看是否正常。

树莓派上pytorch处理加速 树莓派 pytorch_Raspberry Pi 4B_07

&nbsp;import torchvision的时候出现如下报错

&nbsp;&nbsp;File “/home/pi/python3.7/lib/python3.7/lzma.py”, line 27, in &lt;module&gt;
&nbsp;&nbsp;&nbsp; from _lzma import *
ModuleNotFoundError: No module named ‘_lzma’

此时需要执行如下几条命令:

完毕后,再修改下上面报错中提到的/home/pi/python3.7/lib/python3.7/lzma.py文件

树莓派上pytorch处理加速 树莓派 pytorch_python_08

&nbsp;将上面红框标记处的代码修改为

树莓派上pytorch处理加速 树莓派 pytorch_pytorch_09

&nbsp;完毕后再次执行

成功了。

树莓派上pytorch处理加速 树莓派 pytorch_Raspberry Pi 4B_10

5.验证

可以跑下博主之前的博客中的代码,稍微改了下,因为树莓派上没有gpu的配置,所以设置跑在cpu上,不用再去转成cuda形式了。

使用Pytorch自带模型预测图片_竹叶青lvye的博客

结果如下:

树莓派上pytorch处理加速 树莓派 pytorch_Raspberry Pi 4B_11

配置成功,可以看到这个预测时间接近53s了,太长了,后面会有博客介绍如何通过NSC 2神经棒来在树莓派上进行加速。

若需要在编译器里运行,可以参看之前博客方式

树莓派4B安装Tensorflow2.4.0_竹叶青lvye的博客

小讯
上一篇 2025-04-17 23:11
下一篇 2025-05-14 09:09

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/162895.html