
<p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F4c98a8f3j00smbuep009gd000ic00b0p.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR55R">[wei.bq6u.com)</p><p id="350GR55S">偶然看到一个数学视频,让我感到震惊,视频中介绍的一个我从未听说过的定理。这个定理的美妙之处在于,尽管它已经超过2500年未被发现,但这并不是因为它难以证明,而是因为之前没有人注意到其中的模式。这让我意识到,即使是深入研究数学的人,也可能对自己所热爱的领域内存在的知识一无所知。这让我更加确信,知识的海洋是无边无际的,即使是在古老的数学领域中,仍然有着无数未被发现的宝藏等待着我们去探索。这种发现新知的过程既是挑战也充满了乐趣。</p><p id="350GR55T">这个定理非常简单,简单到连学生都能够轻松理解。但是,尽管其原理直观易懂,关于它的深入了解却相当有限。这种基本而简单的数学知识,长时间以来一直未被人们注意,直到20世纪中叶,一个名为阿尔弗雷德·莫斯纳的数学家做出了被认为是开创性的发现。</p><p id="350GR55U">让我们从一些非常简单的情况开始。考虑奇数自然数的部分和,即</p><p id="350GR55V">1 = 1,</p><p id="350GR560">1+3 = 4,</p><p id="350GR561">1+3+5 = 9,</p><p id="350GR562">1+3+5+7 = 16,</p><p id="350GR563">1+3+5+7+9 = 25。</p><p id="350GR564">你发现规律了吗?得到的是平方数,所以奇数的部分和是平方数!古希腊人知道这一点,他们甚至提供了这一发现的一个视觉证明。</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fefd3dde0j00smbudw003qd000ic007fp.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fbe25b718p00smbudy0000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F76068dccp00smbudy0000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F7bcfd87ep00smbudz0000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F3027f3fdp00smbue00000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F20a3eaf2p00smbue10000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F3b2960c5p00smbue10000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F52a6766ap00smbue20000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F7ecf1f3bp00smbue30000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F55d2ed5cp00smbue30000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fc4a354d6p00smbue30000d0000c000kp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Ffdp00smbue40000d0000g000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F47f33a86p00smbue50000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fbb2cc7cap00smbue50000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fb5b15919p00smbue60000d0000k000kp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F601b60fap00smbue60000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F880b4e81p00smbue70000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F7e8abc3ap00smbue70000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F0b306f2cp00smbue80000d0000c000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F3447fdf6p00smbue80000d0000c000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fb50aeb0ap00smbuea0000d0000c000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fcdp00smbuea0000d0000k000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F4afe65e3p00smbueb0000d0000c000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F018b0d9cp00smbueb0000d0000c000gp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fffp00smbuec0000d0000c0008p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fecd97f60p00smbued0000d0000c000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F9a715e2fp00smbued0000d000080008p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F41ea421ep00smbuee0000d000080008p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F06c17503p00smbuee0000d000p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fb2ff2874p00smbuef0000d00008000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F9d52714ap00smbueg0000d00008000cp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F1f804a59p00smbueg0000d0000g0008p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fp00smbuej0000d000080008p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR58A">[wu.guninfo.net)</p><p id="350GR58B">在上图中,彩色的球代表前4个奇数,我们清楚地看到前几个奇数的和给出了一个平方数。</p><p id="350GR58C">莫斯纳采取了一个独特的方法来处理某个已知的数学概念。他不仅仅是从另一个角度重新考虑了这个概念,而且还采用了一种创造性和系统化的方法去重构这个概念。这个过程类似于编制算法,意味着他通过设定一系列明确的步骤和规则,以一种几乎可以编程的方式来深入探讨和论证数学理论。他对上述的构造如下:想象从所有的自然数开始: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,…然后每隔1个数字移除1个数字,即得到的是奇数序列。所以新的数字序列是: 1, 3, 5, 7, 9, …并取部分和得到平方数1, 4, 9,...</p><p id="350GR58D">但当我们使用这种方法时,它更容易泛化(这是数学家喜欢做的事情)。</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Fc86865f4p00smbudt0000d0000k000kp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR58N">现在再次取所有的自然数,每隔2个数字移除1个数字,得到数字序列: 1, 2, 4, 5, 7, 8, 10, 11, 13,…取部分和得到一个新的序列: 1, 3, 7, 12, 19, 27, 37, 48, 61,…再次,每隔1个数字移除1个数字得到: 1, 7, 19, 37, 61,…再次取部分和得到: 1, 8, 27, 64, 125,…你认出这些数字了吗?它们是立方数!1=1³, 8=2³, 27=3³,…</p><p id="350GR58O">这个计算可以在以下图像中构建:</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F1baffd48p00smbudu001fd000ic003hp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR58Q">[wu.ongacu.com)</p><p id="350GR58R">这个模式继续下去。如果我们开始时从自然数中<strong>去掉每第n个数字(</strong>每隔1个数字移除1个数字<strong>)</strong>,取部分和形成一个新序列,从该序列中去掉每第n-1个数字,并取部分和,去掉第n-2个数字等等,<strong>最终会得到一个由原数n的各个幂组成的数列</strong>。</p><p id="350GR58S">我怎么从没听说过这个?如此简单,如此美丽。</p><p id="350GR58T">这才刚刚开始,事实证明,这里还有更多的东西可以发现。例如,如果你开始时移除其他有趣的数字序列,那么会产生什么序列呢?有没有一个通用的模式?</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F54b7a0dbj00smbuel002od000ic005ip.jpg&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR58V">[zong.topzet.com)</p><p id="350GR590">在上图中,<strong>三角数</strong>(1,3,6,10,15,21)从自然数中被移除,得到</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F021de7bfp00smbuel000dd000ic001yp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR592">[pan.choza96.com)</p><p id="350GR593">取部分和得到:</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2F3dd16d89p00smbuem000fd000ic001pp.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR595">[tian.ahckdz.com)</p><p id="350GR596">接着,移除第下标为三角数的数,得到:</p><p class="f_center"><img src="https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F1102%2Ff80f3930p00smbuen000bd000ic0020p.png&thumbnail=660x&quality=80&type=jpg"/><br/><br/></p><p id="350GR598">[bu.j3c5.com)</p><p id="350GR599">继续取部分和得到:6,24,50,96,154,225,326</p><p id="350GR59A">最终,每个序列的第一个数字为:1, 2, 6, 24, 120, …,这些就是<strong>阶乘</strong>,即2 = 2⋅1, 6 = 3⋅2⋅1, 24 = 4⋅3⋅2⋅1等等。</p><p id="350GR59B">注意,三角数是形式为1+2+3+⋅⋅⋅+n的数字,它们被转换为形式为1⋅2⋅3⋅⋅⋅n的数字。这是巧合吗?</p><p id="350GR59C">还要注意,如果我们移除形式为n, 2n, 3n, 4n, … 的数字,其中n > 1,那么输出将是1^n, 2^n, 3^n, 4^n, …,<strong>所以这里输入和输出之间有某种指数关系</strong>。看来一般而言,如果我们将输入序列中的每个数字乘以一个数m,输出序列中的元素都将变为提升到m的幂。</p><p id="350GR59D"><strong>实验</strong></p><p id="350GR59E">为了测试这个想法,我用Python编写了一个程序,能够根据要删除的输入数字序列输出这些序列。我甚至考虑过除加法之外的其他运算。</p><p id="350GR59F">事实证明,如果从自然数中开始移除平方数,即形式为n²的数字,那么会得到一个输出2, 12, 144, 2880, … 这些是形式为n! (n+1)!的数字。</p><p id="350GR59G">相反,如果你移除序列2, 6, 12, 20, 30, 42,… 即形式为n(n+1)的数字,那么你会得到序列1, 4, 36, 576, 14400,…这[bu.share.sks-cutter.com)些是形式为(n!)²的数字。</p><p id="350GR59H">所以看起来这里存在某种双重关系。另一[share.bu.carmenfr.com)方面,鉴于我们之前的发现,阶梯结果并不令人惊讶,因为形式为n[kuai.share.scannesud.com)(n+1)的数字只是三角数乘以2。</p><p id="350GR59I">通过使用上述程序,我能够发[www.tian.bangjuwang.com)现几个其他有趣的关系。包括:</p><p id="350GR59Q">如果输入序列是{2^k}[wei.share.chinavison.com) = {1, 2, 4, 8, 16, 32, …},那么输出序[wei.www.yuanran295.com)列似乎是{3, 8, 60, 3456, ,…},这[bu.share.fondmer.com)是n阶二叉树的独立集合数量。</p><p id="350GR59R">如果选择移除五边形数,即形式为n[kuai.www.ihe-design.net)(3n-1)/2的数字,那么会得到一个形式为(n!)²(n+1)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/160223.html