2025年模型部署的步骤包括(模型部署的步骤包括哪些)

模型部署的步骤包括(模型部署的步骤包括哪些)svg xmlns http www w3 org 2000 svg style display none svg

大家好,我是讯享网,很高兴认识大家。



 <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"> <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path> </svg> <p><strong>“</strong> 打造一款模型是一件非常复杂的事情&#xff0c;设计的问题也非常非常多&#xff0c;因此大家要做好心理准备 <strong>”</strong></p> 

讯享网

这段时间写的文章主要都在讲大模型的应用问题,以及自己在工作中遇到的一些问题;而今天我们就从大模型服务的角度,来思考一下打造一款大模型需要经过哪些步骤,也就是怎么打造一款大模型。

怎么打造一款大模型?

可能不同的人对大模型有不同的理解,不同的企业实现大模型的方式可能也不太一样;但其大体上的步骤和过程还是差不多的。

打造一款大模型第一步应该做什么?

有人说打造大模型的第一步是做训练数据的收集与整理;从技术的角度来说这么说也没错,但从流程上来说就有点问题了,你都不知道你想要一个什么样的大模型,那你怎么收集数据?

在上一篇文章中讲过怎么设计一款大模型,但设计模型只是打造模型的其中一个步骤。

要想打造一款模型,基本上要经过以下几个重要步骤:

  • 需求采集__与分析

    不论做任何事情,第一步都要明白自己想要做什么;因此,第一步就是采集需求,分析需求,然后根据需求设计功能点。

    这里面还涉及到很多细节方面的东西,比如需求评审,需求确认,需求文档等等,这里就不详细展开讨论了。

  • 模型的设计与实现

模型的设计与实现,是大模型的项目的关键环节,这个环节可以说是打造模型过程中最复杂,也是最难的一点,其直接决定着模型的性能。具体来说主要包括以下几点:

设计一款模型,需要结合项目目标,数据特性以及算法理论选择或设计一款模型架构。

理解问题:首先你要理解你的需求,就是你到底想做一个什么样的模型,分类,聚类,生成模型等

设计模型架构:比如选择模型架构,transformer,bert,rnn等;然后根据你的需求,设计神经网络的层数,节点数,正/反向传播,损失函数等。

算法选择:现在需求有了,架构也有了,那么采用哪种算法来实现,比如自然语言处理的分词算法,图像处理的卷积算法等。

正则化与优化策略:为了防止过拟合或欠拟合,并提升模型的泛化能力,所以有时需要使用正则等方式对模型进行优化。

设置评估指标:设计一款模型的目的不是为了好玩,而是这个模型能够解决什么问题,因此就需要有一个标准来评估其好坏。


讯享网

  • 准备训练数据

这一步可能很多人都会觉得很简单,训练数据用爬虫爬一下不就有了,或者掏钱买一点就行了;但事实上,在模型训练过程中数据准备也是很重要的一环,模型的好坏除了取决于模型的设计和架构之外,其次就是训练数据的质量了。

数据采集:数据采集包括数据需求定义,数据源,数据采集,数据存储等等。

数据清洗与预处理:由于数据采集时,数据来源不一而足,数据质量也不一而足,因此数据的清洗和预处理就显得特别重要,其作用就是保证给到大模型的训练数据是高质量的,而不是随便找的。比如,数据缺失,异常值,数据重复,数据转换等多种操作。

数据标注:数据标注应该大部分人都知道,监督学习过程中,需要大量的标注数据才能进行模型训练;但数据标注也有很多注意点,比如数据标注的目的,如何标注,使用哪种工具,标注质量的检查等等;由于训练数据一般比较庞大,因此很难人工进行检查;因此,其难度可想而知。

数据集的划分:有过模型训练经验的人应该都知道,模型训练一般会把数据集划分成训练集,测试集,验证集等多个模块;但数据集应该怎么划分,有哪些标准;比如划分策略,是随机划分,还是分层抽样,或者根据时间划分等。

最后,还要数据的分割工具,数据的存储与加载等等问题。

  • 模型初始化

说到模型初始化,可能有些人听过,有些人根本不知道这玩意;所谓的模型初始化就是,新设计的模型其参数值是默认的或者没有值;因此就需要在训练之前给模型设置一个初始值;这个值可以是随机的,也可以是来自某些经验值。

初始化也是一个复杂的过程,由于某些模型参数量巨大,因此就需要有一个初始化的策略;还有一些参数的权重,包括一些超参数的设计等;比如训练的批次大小,训练速率等。

模型初始化可能会影响到模型的训练成果,或者影响模型的训练效率等。

  • 模型训练

模型训练可能是很多人比较感兴趣的一个话题,而且可能有部分人已经自己训练过一些小模型;因此,这里就不再多说了。

模型训练是一个系统性的过程,涉及到训练数据的收集,整理;超参数的设定,正反向传播函数的选择等等。

  • 模型测试与验证

模型测试与验证这个就更不用多说了,一款模型的效果怎么样,设计的好不好,训练结果是否达到预期;这些都需要在对模型做过测试和验证之后,才能得到结论。

而模型测试与验证,又涉及到前面的训练数据的划分,以及评估指标的实现等等。

  • 模型部署与维护

最后,就是大模型的部署与维护了;大模型与传统的普通企业项目不同,大模型体积巨大,不但自己体积大,而且训练数据体积也很庞大;因此单一机器无法承载大模型的训练,部署与维护;因此分布式就成了一个必然选择。

但,大模型在分布式场景中怎么实现,怎么实现并行计算,怎么进行数据和模型的加载,存储;自动化运维应该怎么做,怎么保证模型的高可用性等等。

还有就是,大模型部署完成后的接口封装,怎么把大模型应用到业务系统中,怎么保证其在高并发环境下的性能和稳定性问题等。

总之,大模型由于其体量问题,其部署与维护需要专业的运维团队,并且还要有完善的自动化运维系统,否则靠人力很难完成。

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【】

在这里插入图片描述

小讯
上一篇 2025-04-27 12:20
下一篇 2025-05-22 16:48

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/157588.html