集合的运算习题课教案(精选8篇)
课题:指对数运算习题课
2018.9.25 教学目的
学生能够:
(1)能够应用指数与对数的基本化简公式;(2)能够熟练应用对数的换底公式与对数恒等式.教师要求:
(1)通过实际例子引导学生熟练应用指数、对数相关运算化简公式;(2)能够对某些式子进行多种变形,带领学生深入理解相关公式的特点和技巧.教学重点:
了解分数指数幂的意义,掌握有理数指数幂的运算性质;了解对数的定义,熟练掌握指数式与对数式的相互转化,会用对数的运算法则、对数恒等式、对数换底公式进行计算。
教学难点:
在运算过程中,选择有利、恰当的公式解题。
对于数学核心素养的考察:
数据分析、逻辑推理、数学运算
课堂教学:
题型
一、指数幂对数的运算
161(23)(22)4()21、80.25(2018)0 log6.25lg2、2.5100
lne21log23lg42lg54(2)4
题型
二、对数互化和换底公式
11已知3a5bc,且2,求c的值。ab
学生练习:
1100a5,10b2,求2ab的值。()
2)已知(c,a0且aloga2logb4
且2ab3,求c的值。
1,b0且b1,链接高考:
2015浙江高考12 若alog43,则2a2a
52016浙江高考12 已知ab1,若logablogba,abba,2
则a,b.课堂方法小结
《集合间的基本运算》
授课学校
六盘水市特殊教育学校
授课教师 杨 霞 授课班级 听障高三年级 课型 数学
教材分析
《集合间的基本运算》是人教版普通高中课程标准实验教科书数学必修一第一章1.1.3,教材9-12页。集合的交、并运算是许多知识的切入点或重要辅助工具,比如后面要学习的函数中对于函数的定义域、值域的求解就要借助函数的并、交运算。
学情分析
学生已经学习了集合的一些基本概念以及集合的基本关系,集合的基本运算是在以上知识的基础上建立起来的,这些集合的基本运算的结果都是集合,因而需要注意运算后的集合需要具备集合的元素的三个性质。学生通过对高中数学中集合的基本知识的学习,从而能够解决一些与集合相关的问题。通过教师启发式引导,学生自主探究完成本节课的学习。教学目标
知识与技能:理解集合的基本运算的定义,掌握集合的 基本运算性质,培养学生熟练运用集合运算的能力。
过程与方法:通过观察和类比,借助韦恩图(Wenn图)理解集合的基本运算,体会直观图示对理解抽象概念的作用,培养数形结合的思想。
情感态度与价值观:在集合的基本运算的学习过程中,体验数学的类比思想和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
教学重难点
重点:让学生把握如何求出并集、交集。
难点:能用图示法表示出集合的关系,能从图示中看出集合的关系。
教学方法
教法:启发式教学 探究式教学 学法:自主探究 分组合作交流
教学用具
多媒体(PowerPoint)、展示图、纸质小棒
教学课时 第一课时
教学准备
教学环境:多媒体教室
活动准备:制作幻灯片、准备导学案、道具
教学过程 如下表
师生活动 设计意图
一、课堂小游戏导入
通过复习集合的含义及表示、集合间的基本关系中有关的符号例如:、、等,引入新课中将要学习的两个符号并集、交集。学生根据幻灯片上出现的集合符号快速作答,反应时间不能超过三秒,否则就算错误。
活跃课堂气氛。让学生既巩固了已学过知识,又能培养学生对新知识的学习兴趣。
二、探索新知 并集 学案:
观察A,B,C这些集合之间是什么关系?
(1)集合A={1,3,5} 集合B={2,4,6}(3)集合C={1,2,3,4,5,6}(2)集合A=﹛有理数﹜?B=﹛无理数﹜??C=﹛实数﹜(3)A=﹛x|2
共同的特点:集合C是由所有属于集合A或属于集合B 的元素组成。
像这样由所有属于集合A或集合B的元素组成的集合,我们称为A与B的并集,记作:A∪B,读作:A并B
A∪B={x | x∈A,或x∈B} 学案:
根据并集的定义在导学案上进行自我练习,也可以和老师进行相互交流。例
设A={1,3, 4,5}, B={2,4,5,6},求A∪B.导案:
(提醒学生画出维恩图进行解答,然后展示PPT,让学生自己作对比,及时改正)注意:求两个集合的并集时,它们的公共元素在并集中只能出现一次.如:
4、5。(因为在集合的表示中我们已经学过了集合中元素要满足互异性)总结:求两个集合的并集就是把两个集合中所有的元素全部放到一起,如果有相同的元素写一个就行。那么请同学们再来看下一张幻灯片,集合A、B、C的关系又是怎样的呢?(出示PPT)学案:
说出集合A,B与集合C之间的关系吗?(1)A={2,4,6,8,10},B={2,3,5,8,9,12},C={2,8};导案:
集合C中的元素只有2、8,通过观察我们可以发现,集合C中的元素2、8,集合A、B中也有。像这样的关系,在数学中我们称为交集,这就是我们将要学习的集合第二个运算交集。
2、交集 导案:
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,(读作“A交B”),A∩B={x|x∈A,且x∈B} 学案:
学生以分组(分为三组)的形式,分别完成以下内容:(1)三种不同状态下集合A、B 交集部分的描绘
(2)用纸棒代替两条直线在相交、平行、重合的状态
下交集是怎样的情况。(3)设A={x|x>-1},B={x|x<1},求A∩B.学案:学生来讲授,提醒求不等式的交集、并集关系时,首先要画出数轴,然后在数轴上标记出集合A、B的区间,最后求出交集,同样用不等式的形式表示出来。
三、课堂小结
导案:
快速区分并、交运算符号的方法: 求集合A、B的并集就是把所有集合A、B中的元素全部放在一起,如果有相同的元素写一个就行。
求集合A、B的交集就是找到集合A、B中共有的元素组成一个集合就是集合A、B的交集。板书设计
集合的基本运算 并集
A∪B={x|x∈A,或x∈B}
二、交集
A∩B={x|x∈A,且x∈B}
通过学生自己的观察、思考然后再进行教学,学生能够更加快速的掌握新知识。
通过练习的方式强化新知识的吸收。
题目已知集合A={x|-1
这是我在“集合与常用逻辑用语”单元复习课上的一道例题, 学生解题速度较快, 有三种解法展示如下:
方法1:因为A∩B=B可得, 可以用数轴表示来分析, 则有
∴0
方法2:因为A∩B=B可得, 可以用数轴表示来分析, 则有
∴0≤m≤5.
方法3:因为A∩B=B可得
当时, 则有2m-1≥m+1, ∴m≥2.
∴0≤m<2.
综上可知m的取值范围是m≥0.
三种不同的结果, 孰是孰非?通过对比学生明白了问题所在.平时老师给题目, 今天可否由同学们出题目?大家可否通过这道题的变化改编出一些题目考考其他同学?一石击起千层浪, 同学们的热情与踊跃简直超乎我的想象, 都想把自己的成果展现出来, 经归类整理如下:
变式1:已知集合A={x|-1
变式2:已知集合A={x|-1
变式3:已知集合A={x|x≥6或x≤-1}, B={x|2m-1
变式4:已知集合A={x|-1
变式5:已知集合A={x|-1
变式6:已知集合, B={x|2m-1
变式7:已知集合, B={x|2m-1
变式8:已知集合A={x|-1
变式9:已知集合A={x|-1
变式10:已知集合A={x|-1
变式11:已知集合A={x|-1
变式12:已知集合A={x|-1
1 性质的给出及证明
证明 集合B除了必含有am+1,am+2,…,an这n-m个元素外,还可以含有a1,a2,…,am这
m个元素中t个(t=0,1,2,…,m),所以集合B相当于在集合{a1,a2,…,am}的每个子集中添加am+1,am+2,…,an这n-m个元素而得到的,因此集合B的个数相当于求{a1,a2,…,am}的子集数,故集合B有2m个.
性质6 M{a1,a2,…,an},且M∩{a1,a2,…,am}≠(m≤n),则这样的集合M有2n-m个.
证明 因为M∩{a1,a2,…,am}≠,不妨设M∩{a1,a2,…,am}={a1,a2,…,ak},其中
k≤m,可知集合M中必含有元素a1,a2,…,ak且不含有元素ak+1,ak+2,…,am,另外M中还可以含有am+1,am+2,…,an这n-m个元素中t个(t=0,1,2,…,n-m.),所以集合M相当于在
{am+1,am+2,…,an}的每个子集中添加a1,a2,…,ak这k个元素而得到的,因此集合M的个数相当于求{am+1,am+2,…,an}的子集数,故集合M有2n-m个.
性质7 满足A∪B={a1,a2,…,an}的有序集合对(A,B)有3n组.
证明 记M={a1,a2,…,an}.
(1)当A=时,由A∪B=M,知B=M,这样的(A,B)只有1组.
(3)同理当A只含有M中2个元素时,(A,B)有22C2n组.
……
当A=M时,(A,B)有2nCnn组,由分类计数原理知,(A,B)共有
1+21C1n+22C2n+…+2nCnn=(1+2)n=3n组.
性质8 若A,B{a1,a2,…,an}=U,且满足A∩B={a1,a2,…,ak}(k≤n),则有序集合对(A,B)有3n-k组.
证明 由条件知A,B中都必须含有a1,a2,…,ak这k个元素,记M={ak+1,ak+2,…,an},M中有t=n-k个元素,下面就A中其它元素(但必在M中)的个数进行讨论.
(1)当A含M中零个元素时,A={a1,a2,…,ak},A只有1个,即C0t个,
由A∩B={a1,a2….ak},知B中除了a1,a2,…,ak这k个元素之外,B还可以含M中
若干个元素,B的个数相当于M的子集数,因此B有2t个,由分步计数原理知这样的有序集合对(A,B)有C0t2t组.
(2)当A含有M中1个元素时,A有C1t个,因A∩B={a1,a2,…,ak},这时B中可含有
M中其它任何元素(除A所含的)若干个,所以B有2t-1个子集,由分步计数原理知有序集合对(A,B)有C1t2t-1组.
(3)同理当A只含有M中2个元素时,有序集合对(A,B)有C2t2t-2组.
当A含有M全部元素时,(A,B)有20Ctt组,
……
由分类计数原理知,有序集合对(A,B)共有
C0t2t+C1t2t-1+C2t2t-2+…+Ctt20=Ctt2t+Ct-1t2t-1+Ct-2t2t-2+…+C0t20=(1+2)t=3t组,即有序集合对(A,B)共有3n-k组.
2 性质的应用
例1 已知B={xx2-x=0},则满足A∩B=A的集合A有个.
解 因为B={xx2-x=0}={0,1},由性质1知:A∩B=AAB={0,1},而B有4个子集,即A有4个.
点评 当题设中有A∩B=A,A∪B=B时,要注意用上述性质1,2把条件等价转化.
例2 已知M={yy=x2+1,x∈R},N={yy=x+1,x∈R},那么M∩N=,M∪N=.
解 因为y=x2+1y≥1,所以M={yy≥1},又因为y=x+1y∈R,所以N=R,MN,由性质1,2知M∩N=M;M∪N=N.
点评 熟练地运用性质1,2可以化简集合的运算,提高解题的速度及准确性.
点评 已知集合A∩B,确定集合对(A,B)时,注意用性质8.
1.1.3 集合的基本运算
整体设计
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点
教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排 2课时
教学过程 第1课时
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢? 教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1-1-3-1 ②观察集合A与B与集合C={1,2,3,4}之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.中鸿智业信息技术有限公司
http:// 或http://
推进新课 新知探究 提出问题
①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么? ②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗? 请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:
①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素所组成了集合C.③C={x|x∈A,或x∈B}.④如图1131所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为: A∩B={x|x∈A,且x∈B}.用Venn图表示,如图1132所示.图1-1-3-2 应用示例
思路1
1.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.中鸿智业信息技术有限公司
http:// 或http://
图1-1-3-3 活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练
1.集合M={1,2,3},N={-1,5,6,7},则M∪N=_____.M∩N=__.答案:{-1,1,2,3,5,6,7}
2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=___.分析:由题意得m2=1或2或m,解得m=-1,1,2,答案:-1,2,2,0.因m=1不合题意,故舍去.2,0 3.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为
()A.2
B.5
C.7
D.9 分析:∵A∪B={0,2},∴A{0,2}.则A=或A={0}或A={2}或A={0,2}.当A=时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.答案:D 4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是
()A.1
B.3
C.4
D.8 分析:转化为求集合A子集的个数.很明显3A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.答案:C 2.设A={x|-1
1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.答案:A∪B=R,A∩B={x|2
http:// 或http://
答案:A∪B={3,2},A∩B=.3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.[0,2]
B.[1,2]
C.[0,4]
D.[1,4]
分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].图1-1-3-5 答案:A 课本P11例
6、例7.思路2
1.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么? 活动:
学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0
1.设A={x|x=2n,n∈N},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B, 即对任意m∈A有m∈B,所以AB.而10∈B但10A,即AB,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a-1=9或a2=9, a=10或a=±3, 当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意.当a=-3时,a-1=-4不合题意.故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3
()A.{x|-3
B.{x|1
C.{x|x>-3}
D.{x|x<1} 分析:集合A={x|2x+1<3}={x|x<1}, 观察或由数轴得A∩B={x|-3
中鸿智业信息技术有限公司
http:// 或http://
明确集合A、B中的元素,教师和学生共同探讨满足A∩B=B的集合A、B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,BA,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A、B均是方程的解集,通过画Venn图发现集合A、B的关系,从数轴上分析求得a的值.解:由题意得A={-4,0}.∵A∩B=B,∴BA.∴B=或B≠.当B=时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解, 则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.当B≠时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1, 此时,B={x|x2=0}={0}A,即a=-1符合题意.若集合B含有两个元素,则这两个元素是-4,0, 即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.-40-2(a1),则有 2-40a-1.解得a=1,则a=1符合题意.综上所得,a=1或a≤-1.变式训练
1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A(A∩B)成立的所有a值的集合是什么?
2a13a5,解:由题意知A(A∩B),即AB,A非空,利用数轴得2a13,解得6≤a≤9,3a522.即所有a值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.分析:由A∪B=A得BA,则有B=或B≠,因此对集合B分类讨论.解:∵A∪B=A,∴BA.又∵A={x|-2≤x≤5}≠,∴B=,或B≠.当B=时,有m+1>2m-1,∴m<2.当B≠时,观察图1-1-3-7:
图1-1-3-7
m12m1,由数轴可得2m1,解得-2≤m≤3.2m15.综上所述,实数m的取值范围是m<2或-2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.知能训练
课本P11练习1、2、3.中鸿智业信息技术有限公司
http:// 或http://
【补充练习】
1.设a={3,5,6,8},B={4,5,7,8},(1)求A∩B,A∪B.(2)用适当的符号(、)填空: A∩B__A,B__A∩B,A∪B__A,A∪B__B,A∩B_____A∪B.解:(1)因A、B的公共元素为5、8,故两集合的公共部分为5、8, 则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A、B两集合的元素3、4、5、6、7、8, 故A∪B={3,4,5,6,7,8}.(2)由文氏图可知
A∩BA,BA∩B,A∪BA,A∪BB,A∩BA∪B.2.设A={x|x<5},B={x|x≥0},求A∩B.解:因x<5及x≥0的公共部分为0≤x<5, 故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分.所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.7.2006江苏高考,7若A、B、C为三个集合,A∪B=B∩C,则一定有()A.AC
B.CA
C.A≠C
D.A= 分析:思路一:∵(B∩C)B,(B∩C)C,A∪B=B∩C, ∴A∪BB,A∪BC.∴ABC.∴AC.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D, 令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C, 而此时A=C,排除C.答案:A 拓展提升
观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;(2)当A=时,A∩B,A∪B这两个运算结果与集合A,B的关系;(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.由(1)(2)(3)你发现了什么结论?
活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足AB,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.中鸿智业信息技术有限公司
http:// 或http://
图1-1-3-8 解:A∩B=AABA∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下: A∪B=B∪A,A(A∪B),B(A∪B);A∪A=A,A∪=A,ABA∪B=B;A∩B=B∩A;(A∩B)A,(A∩B)B;A∩A=A;A∩=;ABA∩B=A.课堂小结
本节主要学习了: 1.集合的交集和并集.2.通常借助于数轴或Venn图来求交集和并集.作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本P12习题1.1A组6、7、8.设计感想
由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)
一、教学目标:
1、掌握乘法混合运算的顺序。
2、培养小数乘法计算的技能。
3、能学会“四舍五入”法精确数位。
二、教学重点:掌握乘法混合运算的顺序。
三、教学难点:培养小数乘法计算的技能。
四、教学过程:
1、教学导入:师 你们在学校学过了小数乘法的混合运算,哪位小朋友能告诉小数乘法的混合运算与什么运算的顺序是相同的呢?(回答正确加分,非常棒,掌声鼓励,不正确,请坐下,继续加油,)对,它是与整数的混合运算的顺序是相同的。师在黑板板书(小数乘法运算顺序:先算乘法,再算加减法,),今天是要讲解小数乘法混合运算的习题,我们一起来闯关吧!(打开训练P6)
2、讲述训练题:
一、轻松填表提示举例子(师:我们用的知识点是四舍五入法,准备精确到哪位,举例子如0.7053精确到个位,就看个位的后一位,也就是十分位,大于等于5就进1,否则就舍去。)
二、看你能得几颗星?(师:请大家迅速地把下面几
道题做完,看谁做得越快越好,全对加一百分,错一题减一百分)看情况,再总结,针对错的题型讲解。
三、列示算算看(由哪个学生注意力不集中的学生读
题,由另外一个学生回答怎样做?)
四、数学医生。师:计算顺序有没有错,还是计算失
误?(两位学生来完成,并说出理由,回答正确加分,)
五、解决问题(由两位学生在黑板一人做一种方法,看哪位同学表现最棒。)
六、最大与最小。(师提示法:题目中是几位小数,精确到了哪位,我们就看一下位,是进还是舍。)
七、停车费是多少?师读题,(涉及生活中停车问题,小朋友们要是学会了就可以帮父母算停车费了)分析法解决。
八、小小神算手。师:我们一起来挑战吧!看这道题到底难不难,难在哪里?提示法(留心观察每一个这些数字,能不能凑整)
五、总结:所做的题型,以及所学的知识点,做的笔记。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学重点:二次根式混合运算算理的理解。
教学难点:类比整式运算准确快速的.进行二次根式的混合运算。
教学过程:
一、整式的有关概念
1、单项式、3、多项式、2、单项式的系数及次数、4、多项式的项、次数、多项式的项、5、整式、二、整式的运算
(一)整式的加减法
(二)整式的乘法
1、同底数的幂相乘、3、积的乘方、5、单项式乘以单项式、7、多项式乘以多项式、9、完全平方公式、2、幂的乘方、4、同底数的幂相除、6、单项式乘以多项式、8、平方差公式、知 识 你 回 忆 起 了 吗
(二)整式的除法
1、单项式除以单项式、2、多项式除以单项式、一、整式的有关概念数与字母乘积,这样的代数式叫单项式。数与字母乘积,这样的代数式叫单项式。
1、单项式:、单项式: 单独一个数或字母也是单项式。单独一个数或字母也是单项式。
2、单项式的系数: 单项式中的数字因数。、单项式的系数: 单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。、单项式的次数:单项式中所有的字母的指数和。练习:指出下列单项式的系数与指数各是多少。练习:指出下列单项式的系数与指数各是多少。a, 3 4 , 2x y 2 mn 3
4、多项式:几个单项式的和叫多项式。、多项式:几个单项式的和叫多项式。2 , ? 3 a b ∏,? 3 2
5、多项式的项及次数:组成多项式中的单项式叫、多项式的项及次数: 多项式的项,多项式的项,多项式中次数最高项的次数叫多项 式的次数。特别注意,式的次数。特别注意,多项式的次数不是组成多 项式的所有字母指数和!!项式的所有字母指数和!!练习:指出下列多项式的次数及项。练习:指出下列多项式的次数及项。2 x y + 5m n ? 2 3 2 5,2x3 y2 z 3 4 ? + ab 7 2
6、整式:单项式与多项式统称整式。(分母含、整式:单项式与多项式统称整式。(分母含。(有字母的代数式不是整式)有字母的代数式不是整式)
二、整式的运算
(一)整式的加减法 基本步骤:去括号,合并同类项。基本步骤:去括号,合并同类项。
(二)整式的乘法
1、同底数的幂相乘、法则:同底数的幂相乘,底数不变,指数相加。法则:同底数的幂相乘,底数不变,指数相加。数学符号表示: 数学符号表示:(其中m、n为正整数)为正整数)其中、为正整数 a ?a = a m n 4 8 2 2 m+n 练习:判断下列各式是否正确。练习:判断下列各式是否正确。a ? a = 2a , b + b = b , m + m = 2m 3 3 3 4 2(?x)?(?x)?(?x)=(?x)= x 3 2 6 6
2、幂的乘方、法则:幂的乘方,底数不变,指数相乘。法则:幂的乘方,底数不变,指数相乘。数学符号表示: 数学符号表示:为正整数)(其中m、n为正整数)其中、为正整数(a)p m n = a mn 练习:判断下列各式是否正确。练习:判断下列各式是否正确。[(a)] = a(其中m、n、P为正整数)其中m、n、P为正整数 为正整数)m n mnp 4+4 8 2 3 4 2×3×4(a)=a =a ,[(b)] =b 4 4 =b 24(?x)2 2n?1 = x ,(a)=(a)=(a)4 m m 4 4n?2 2m 2
3、积的乘方、法则:积的乘方,先把积中各因式分别乘方,再把 法则:积的乘方,先把积中各因式分别乘方,所得的幂相乘。(即等于积中各因式乘方的积。)。(即等于积中各因式乘方的积 所得的幂相乘。(即等于积中各因式乘方的积。)符号表示: 符号表示:(ab)= a b ,(其中 n 为正整数), n n n(abc)= a b c(其中 n 为正整数)n n n n 练习:计算下列各式。练习:计算下列各式。1 2 3(2 xyz),(a b),(? 2 xy 2)3 ,(? a 3b 2)3 2 4
4、同底数的幂相除、法则:同底数的幂相除,底数不变,指数相减。法则:同底数的幂相除,底数不变,指数相减。数学符号表示: 数学符号表示: a ÷a = a m n m?n 为正整数)(其中m、n为正整数)其中、为正整数 a a ?p 0 1 = p(a ≠ 0 , p 为正整数 a = 1(a ≠ 0))a ÷a = a 6 3 判断: 判断: 6÷3 = a ,10 = ?20, 2 ?2 40 5 3 2()=1,(?m)÷(?m)= ?m 5 练习: 练习:计算 1 ?1 ?1 ?2 ?3 2003 0 10 ×(0.1)÷2 ÷()×[(?2)] 2 m 2 m 2 2 2 m?n m+n(2)÷2 ,(x)÷(x? x),a ÷a
5、单项式乘以单项式、法则:单项式乘以单项式,把它们的系数、法则:单项式乘以单项式,把它们的系数、相同 字母的幂分别相乘,字母的幂分别相乘,其余的字母则连同它的指数 不变,作为积的一个因式。不变,作为积的一个因式。练习:计算下列各式。练习:计算下列各式。(1)(5x)?(?2x y),(2)(?3ab)?(?4b)3 2 2 3(3)(?a)b ?(?a b), 2 2 3 3 5 1 2(4)(? a bc)?(? c)?(ab c)3 4 3 m 2 3 2n
6、单项式乘以多项式、法则:单项式
乘以多项式,法则:单项式乘以多项式,就是根据分配律用单 项式的去乘多项式的每一项,再把所得的积相加。项式的去乘多项式的每一项,再把所得的积相加。
7、多项式乘以多项式、法则:多项式乘以多项式,先用一个多项式的每 法则:多项式乘以多项式,一项去乘另一个多项式的每一项,一项去乘另一个多项式的每一项,再把所得的积 相加。相加。练习: 练习:
1、计算下列各式。、计算下列各式。(1)(?2 a)?(x + 2 y ? 3c),(2)(x + 2)(y + 3)?(x + 1)(y ? 2)1(3)(x + y)(?2 x ? y)2
2、计算下图中阴影部分的面积、2b b a
8、平方差公式、法则:两数的各乘以这两数的差,法则:两数的各乘以这两数的差,等于这两数的平方差。平方差。数学符号表示: 数学符号表示:(a + b)(a ? b)= a ? b 2 2 其中 a, b既可以是数 , 也可以是代数式.说明: 说明:平方差公式是根据多项式乘以多 项式得到的,它是两个数的和 两个数的和与 项式得到的,它是两个数的和与同样的 两个数的差的积的形式。的差的积的形式 两个数的差的积的形式。
9、完全平方公式、法则:两数和(或差)的平方,法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍 方和再加上(或减去)这两数积的 倍。数学符号表示: 数学符号表示:(a + b)= a + 2ab + b;2 2 2(a ? b)= a ? 2ab + b 2 2 2 其中a, b既可以是数 也可以是代数式 ,.即 :(a ± b)= a ± 2 ab + b 2 2 2 特别说明: 完全平方公式 是根据乘方的意义和 多项式乘法法则得到的 , 因此(a ± b)≠ a ± b 2 2 2 记,切 记!要 特 别 注 意 哟,切(1)(x + 2 y)(x ? 2 y)= x ? 2 y , 2 2 1 说明 式 是(2)(2a ? 5b)= 4a ? 25b , 2 2 2 1 1 2 2(3)(x ? 1)= x ? x ? 1, 2 4(4)无论是平方差公式, 还是完全平方公式, a, b只能表示一切有理数.2、计算下列式。、计算下列式。(1)(?6 x + y)(?6 x ? y)(2)(x + 4 y)(x ? 9 y)(3)(3 x + 7 y)(?3 x ? 7 y)(4)(x ? 3 y + 2 z)(x + 3 y + 2 z)(5)199.9 ,(6)2001 ? 1999 2 2
3、简答下列各题:、简答下列各题: 2 2 1 1 2(1)已知 a + 2 = 5, 求(a +)的值.a a 2 2 2(2)若(x ? y)= 2, x + y = 1, 求 xy 的值.(3)如果(m ? n)+ z = m + 2 mn + n , 2 2 2 则 z应为多少 ?
(二)整式的除法
1、单项式除以单项式、法则:单项式除以单项式,把它们的系数、法则:单项式除以单项式,把它们的系数、相同 字母的幂分别相除后,作为商的一个因式,字母的幂分别相除后,作为商的一个因式,对于 只在被除式里含有的字母,只在被除式里含有的字母,则连同它的指数一起 作为商的一个因式。作为商的一个因式。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/145230.html