<p style="margin-left:.0001pt;text-align:justify;">#<span style="background-color:#ffff00;">第八章</span></p>
讯享网
# Lab: Decision Trees决策树
Fitting Classification Trees构建分类树
install.packages(“tree”)
library(tree)
library(ISLR2)
attach(Carseats)
High <- factor(ifelse(Sales <= 8, “No”, “Yes”))
Carseats <- data.frame(Carseats, High)#合并数据
tree.carseats <- tree(High ~ . - Sales, Carseats)#建立分类树
summary(tree.carseats)

可知训练错误率是9%
plot(tree.carseats)

text(tree.carseats, pretty = 0)#显示节点标记

tree.carseats



用训练集建立分类树,在测试集上评估此树的预测效果
set.seed(2)
train <- sample(1:nrow(Carseats), 200)
Carseats.test <- Carseats[-train, ]
High.test <- High[-train]
tree.carseats <- tree(High ~ . - Sales, Carseats,
subset = train)
tree.pred <- predict(tree.carseats, Carseats.test,
type = “class”)
table(tree.pred, High.test)
(104 + 50) / 200

该方法能对测试集上约77%的数据做出正确的预测

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/144959.html