fairseq教程(fairscale)

fairseq教程(fairscale)p style margin left 0001pt text align justify span style background color ffff00 第八章 span p Lab Decision Trees 决策树 Fitting

大家好,我是讯享网,很高兴认识大家。



 <p style="margin-left:.0001pt;text-align:justify;">#<span style="background-color:#ffff00;">第八章</span></p> 

讯享网

# Lab: Decision Trees决策树

Fitting Classification Trees构建分类树

install.packages(“tree”)

library(tree)

library(ISLR2)

attach(Carseats)

High &lt;- factor(ifelse(Sales &lt;= 8, “No”, “Yes”))

Carseats &lt;- data.frame(Carseats, High)#合并数据

tree.carseats &lt;- tree(High ~ . - Sales, Carseats)#建立分类树


讯享网

summary(tree.carseats)

可知训练错误率是9%

plot(tree.carseats)

text(tree.carseats, pretty = 0)#显示节点标记

tree.carseats

用训练集建立分类树,在测试集上评估此树的预测效果

set.seed(2)

train &lt;- sample(1:nrow(Carseats), 200)

Carseats.test &lt;- Carseats[-train, ]

High.test &lt;- High[-train]

tree.carseats &lt;- tree(High ~ . - Sales, Carseats,

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;subset = train)

tree.pred &lt;- predict(tree.carseats, Carseats.test,

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;type = “class”)

table(tree.pred, High.test)

(104 + 50) / 200

该方法能对测试集上约77%的数据做出正确的预测

小讯
上一篇 2025-06-01 14:19
下一篇 2025-05-24 21:57

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/144959.html