深度学习中的优化算法之NAG

深度学习中的优化算法之NAG之前在 https blog csdn net fengbingchun article details 介绍过 Momentum SGD 这里介绍下深度学习的另一种优化算法 NAG NAG Nesterov Accelerated Gradient 或 Nesterov momentum 是梯度优化算法的扩展

大家好,我是讯享网,很高兴认识大家。

      之前在https://blog.csdn.net/fengbingchun/article/details/ 介绍过Momentum SGD,这里介绍下深度学习的另一种优化算法NAG。

      NAG:Nesterov Accelerated Gradient或Nesterov momentum,是梯度优化算法的扩展,在基于Momentum SGD的基础上作了改动。如下图所示,截图来自:https://arxiv.org/pdf/1609.04747.pdf


讯享网

       基于动量的SGD在最小点附近会震荡,为了减少这些震荡,我们可以使用NAG。NAG与基于动量的SGD的区别在于更新梯度的方式不同。

       以下是与Momentum SGD不同的代码片段:

       1. 在原有枚举类Optimization的基础上新增NAG:

enum class Optimization { BGD, // Batch Gradient Descent SGD, // Stochastic Gradient Descent MBGD, // Mini-batch Gradient Descent SGD_Momentum, // SGD with Momentum AdaGrad, // Adaptive Gradient RMSProp, // Root Mean Square Propagation Adadelta, // an adaptive learning rate method Adam, // Adaptive Moment Estimation AdaMax, // a variant of Adam based on the infinity norm NAG // Nesterov Accelerated Gradient };

讯享网

       2. 计算z的方式不同:NAG使用z2

讯享网float LogisticRegression2::calculate_z(const std::vector<float>& feature) const { float z{0.}; for (int i = 0; i < feature_length_; ++i) { z += w_[i] * feature[i]; } z += b_; return z; } float LogisticRegression2::calculate_z2(const std::vector<float>& feature, const std::vector<float>& vw) const { float z{0.}; for (int i = 0; i < feature_length_; ++i) { z += (w_[i] - mu_ * vw[i]) * feature[i]; } z += b_; return z; }

       3. calculate_gradient_descent函数:

void LogisticRegression2::calculate_gradient_descent(int start, int end) { switch (optim_) { case Optimization::NAG: { int len = end - start; std::vector<float> v(feature_length_, 0.); std::vector<float> z(len, 0), dz(len, 0); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z2(data_->samples[random_shuffle_[i]], v); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; v[j] = mu_ * v[j] + alpha_ * dw; // formula 5 w_[j] = w_[j] - v[j]; } b_ -= (alpha_ * dz[x]); } } break; case Optimization::AdaMax: { int len = end - start; std::vector<float> m(feature_length_, 0.), u(feature_length_, 1e-8), mhat(feature_length_, 0.); std::vector<float> z(len, 0.), dz(len, 0.); float beta1t = 1.; for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); beta1t *= beta1_; for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; m[j] = beta1_ * m[j] + (1. - beta1_) * dw; // formula 19 u[j] = std::max(beta2_ * u[j], std::fabs(dw)); // formula 24 mhat[j] = m[j] / (1. - beta1t); // formula 20 // Note: need to ensure than u[j] cannot be 0. // (1). u[j] is initialized to 1e-8, or // (2). if u[j] is initialized to 0., then u[j] adjusts to (u[j] + 1e-8) w_[j] = w_[j] - alpha_ * mhat[j] / u[j]; // formula 25 } b_ -= (alpha_ * dz[x]); } } break; case Optimization::Adam: { int len = end - start; std::vector<float> m(feature_length_, 0.), v(feature_length_, 0.), mhat(feature_length_, 0.), vhat(feature_length_, 0.); std::vector<float> z(len, 0.), dz(len, 0.); float beta1t = 1., beta2t = 1.; for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); beta1t *= beta1_; beta2t *= beta2_; for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; m[j] = beta1_ * m[j] + (1. - beta1_) * dw; // formula 19 v[j] = beta2_ * v[j] + (1. - beta2_) * (dw * dw); // formula 19 mhat[j] = m[j] / (1. - beta1t); // formula 20 vhat[j] = v[j] / (1. - beta2t); // formula 20 w_[j] = w_[j] - alpha_ * mhat[j] / (std::sqrt(vhat[j]) + eps_); // formula 21 } b_ -= (alpha_ * dz[x]); } } break; case Optimization::Adadelta: { int len = end - start; std::vector<float> g(feature_length_, 0.), p(feature_length_, 0.); std::vector<float> z(len, 0.), dz(len, 0.); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; g[j] = mu_ * g[j] + (1. - mu_) * (dw * dw); // formula 10 //float alpha = std::sqrt(p[j] + eps_) / std::sqrt(g[j] + eps_); float change = -std::sqrt(p[j] + eps_) / std::sqrt(g[j] + eps_) * dw; // formula 17 w_[j] = w_[j] + change; p[j] = mu_ * p[j] + (1. - mu_) * (change * change); // formula 15 } b_ -= (eps_ * dz[x]); } } break; case Optimization::RMSProp: { int len = end - start; std::vector<float> g(feature_length_, 0.); std::vector<float> z(len, 0), dz(len, 0); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; g[j] = mu_ * g[j] + (1. - mu_) * (dw * dw); // formula 18 w_[j] = w_[j] - alpha_ * dw / std::sqrt(g[j] + eps_); } b_ -= (alpha_ * dz[x]); } } break; case Optimization::AdaGrad: { int len = end - start; std::vector<float> g(feature_length_, 0.); std::vector<float> z(len, 0), dz(len, 0); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; g[j] += dw * dw; w_[j] = w_[j] - alpha_ * dw / std::sqrt(g[j] + eps_); // formula 8 } b_ -= (alpha_ * dz[x]); } } break; case Optimization::SGD_Momentum: { int len = end - start; std::vector<float> v(feature_length_, 0.); std::vector<float> z(len, 0), dz(len, 0); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; v[j] = mu_ * v[j] + alpha_ * dw; // formula 4 w_[j] = w_[j] - v[j]; } b_ -= (alpha_ * dz[x]); } } break; case Optimization::SGD: case Optimization::MBGD: { int len = end - start; std::vector<float> z(len, 0), dz(len, 0); for (int i = start, x = 0; i < end; ++i, ++x) { z[x] = calculate_z(data_->samples[random_shuffle_[i]]); dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]); for (int j = 0; j < feature_length_; ++j) { float dw = data_->samples[random_shuffle_[i]][j] * dz[x]; w_[j] = w_[j] - alpha_ * dw; } b_ -= (alpha_ * dz[x]); } } break; case Optimization::BGD: default: // BGD std::vector<float> z(m_, 0), dz(m_, 0); float db = 0.; std::vector<float> dw(feature_length_, 0.); for (int i = 0; i < m_; ++i) { z[i] = calculate_z(data_->samples[i]); o_[i] = calculate_activation_function(z[i]); dz[i] = calculate_loss_function_derivative(o_[i], data_->labels[i]); for (int j = 0; j < feature_length_; ++j) { dw[j] += data_->samples[i][j] * dz[i]; // dw(i)+=x(i)(j)*dz(i) } db += dz[i]; // db+=dz(i) } for (int j = 0; j < feature_length_; ++j) { dw[j] /= m_; w_[j] -= alpha_ * dw[j]; } b_ -= alpha_*(db/m_); } }

       执行结果如下图所示:测试函数为test_logistic_regression2_gradient_descent,多次执行每种配置,最终结果都相同。图像集使用MNIST,其中训练图像总共10000张,0和1各5000张,均来自于训练集;预测图像总共1800张,0和1各900张,均来自于测试集。NAG和Momentum SGD配置参数相同的情况下,即学习率为0.01,动量设为0.7,它们的耗时均为6秒,识别率均为100%

       GitHub:https://github.com/fengbingchun/NN_Test

小讯
上一篇 2025-02-22 09:55
下一篇 2025-03-02 07:21

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容,请联系我们,一经查实,本站将立刻删除。
如需转载请保留出处:https://51itzy.com/kjqy/123940.html