数列求和的基本方法和技巧

数列求和的基本方法和技巧

大家好,我是讯享网,很高兴认识大家。数列求和的基本方法和技巧

  • 相关推荐

数列求和的基本方法和技巧

  在我们的学习时代,很多人都经常追着老师们要知识点吧,知识点也可以通俗的理解为重要的内容。掌握知识点是我们提高成绩的关键!以下是小编整理的数列求和的基本方法和技巧,供大家参考借鉴,希望可以帮助到有需要的朋友。

  一、公式法

  如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。注意等比数列公示q的取值要分q=1和q≠1。

  二、倒序相加法

  如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的。

  三、错位相减法

  如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的。

  四、裂项相消法

  把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的。

  五、分组求和法

  若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减。

  六、并项求和法

  一个数列的前n项和中,若可两两结合求解,则称之为并项求和法。形如 类型,可采用两项合并求解。

  七、数列知识整合

  1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

  2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

  3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

  拓展:求数列极限的方法总结

  极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数。 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。以下我们就极限的内容简单总结下。

  极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。

  四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。

  与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限 存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

  下面我们重点讲一下数列极限的典型方法。

  重要题型及点拨

  1、求数列极限

  求数列极限可以归纳为以下三种形式。

  ★抽象数列求极限

  这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

  ★求具体数列的极限,可以参考以下几种方法:

  a、利用单调有界必收敛准则求数列极限。

  首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

  b、利用函数极限求数列极限

  如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

  ★求项和或项积数列的极限,主要有以下几种方法:

  a、利用特殊级数求和法

  如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

  b、利用幂级数求和法

  若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

  c、利用定积分定义求极限

  若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

  d、利用夹逼定理求极限

  若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

  e、求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

【数列求和的基本方法和技巧】相关文章:

读书的方法和技巧07-27

演讲的技巧和方法07-23

学好英语的方法和技巧01-31

即兴演讲的技巧和方法04-23

面试的基本形式和步骤技巧03-21

写作文的技巧和方法08-04

高中作文开头方法和技巧07-25

实用的唱歌技巧和发声方法07-22

高效学习方法和技巧08-25

数列求极限的方法总结04-28

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。
本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://51itzy.com/62553.html
(0)
上一篇 2024年 9月 12日 23:51
下一篇 2024年 9月 13日 07:00

相关推荐