大家好,我是讯享网,很高兴认识大家。初三数学工作总结 初三数学工作总结(精选18篇) 初三数学工作总结 篇1 本学期以来,我所担任初三(1)、(2)两个班的数学教学取的较好效果,,我坚持”以学生发展为本”的指导思想,关注每位学生,帮助他们在原有基础上得到提高和发展,初三数学教学总结。经过一个学期的努力,现将具体工作总结如下: 一、面向全体因材施教 在教学实践中,全面贯彻教育方针,面向全体学生,采用抓两头、促中间,实施分层教学,因材施教,因人施教,使全体学生都能学有所得。 1、备课。精心钻研教材,细心备课;做到:重点难点突出,易混易错知识点清晰,并掌握好、中、差学生的认知能力,分层次设计练习题,分层次落实训练内容,使全体学生都能轻松学习,学有所获。 2、授课。一是从问题出发进行教学。让学生自己发现问题,自己提出问题,自己解决问题。尤其鼓励学生自己提出问题,因为提出一个问题比解决一个问题更重要。二是情感教学。深刻领会”亲其师、信其道、乐其学”的效应,与学生建立深厚的师生感情,在课堂上,始终做到和善愉快的教育学生,在没有欧打、没有哭泣、没有暴力、没有厌恶的气氛下进行教学。正确对学生进行学法指导,使学生愿学、乐学、会学。 3、创造成功体验的机会。一是从多个方面给学困生创设学习时间空间,采用课堂多提问,一帮一合作学习,作业分层照顾,指导学困生自己提出问题等措施;二是利用课后时间与其谈心,树立正确积极向上的人生观,同时经常在学困生的作业上、试卷上写上一些鼓励的语言,及时与家长交流学生学习的情况,做到学校、家庭齐关心。 二、团结奉献拼博进取 1、团队合作。我们五位数学老师团结在一起,把初三教学工作摆在首位,齐心协力,采用听课、评课,使初三的数学教学达到扬长避短的目的。 2、努力拼搏。在复习阶段,老师们团结合作,齐心协力,找题、选题、编题,并对一些资料进行剪贴重组,自编大量资料,使习题具有典型性,科学性、实效性。而自己也对于每次单元测试,摸拟测试,不管每天几点钟考完,当天必须批改。 初三数学工作总结 篇2 我们初三数学备课组在本学期继续认真学习学科新课程标准,将新课改的理念渗透到数学教学中,认真研究教材教法、学生学法,根据本届初三学生的实际情况,较为圆满地完成了毕业班数学教学工作,下面总结一下本学年的工作情况。 (一)、坚持不懈地抓好教学常规管理 要求本组教师抓课堂教学,在课堂上要准确无误地把知识传授给学生;采用灵活多变富用启迪性的教育法;课堂结构在优化上求效益;用条理清楚的语言表达,利用多媒体来辅助教学,激起学生学习兴趣,学生积极活动,师生形成合力,取得最大的教学效果。 抓备课,课前认真分析、研究教材的知识点、重点、难点,把要引导的内容和过程统筹设计,哪怕在上课时所做的设计和实际不一定相吻合老师们也认真设计好,因为这是教学有的放矢的第一步。课上的巡回指导和个别提问虽然会感到劳累,但是,老师们也切实用心地去做。课下的辅导和作业老师们更能悉心指导、积极奉献。能做到在个人备课的基础上,坚持备课组集体研究;在抓好教学环节的基础上,坚持集体备课,相互交流,相互探讨,认真备好每一节课,课组活动确实有效、抓住关键、提纲挈领、启发引导、有助于各位教师设计好每节课,使之在教材处理、教法优选、课堂把握、差生指导、教学美化等方面做得更好。 (二)、关于考试和练习 对于考试,我们认真研究了今年中考的目标和要求,分析了历年来的中考数学试题,从提高教学质量的目的出发,改进考试方式,把握考试尺度,讲究考试效果,不出偏题、怪题,注意代表性,强调覆盖面,以尽量反馈出学生掌握知识的情况,暴露出教学中存在的问题。试题由备课组教师轮流命题,以锻炼各位教师把握重点、难点、关键的能力,考试以后,能及时召开质量分析会,及时诊断,及时反思,及时研究制定调控方案,并在教学中及时解决,从而使数学教学质量的不断提高。 在平常教学中,我们坚持“堂堂清”、“日日清”、“周周清”。“堂堂清”、“日日清”、“周周清”是相互促进、密不可分的一个整体。“堂堂清”是基础,“日日清”是必不可少的一个补救措施,“周周清”是“堂堂清”、“日日清”的保障,有了“周周 清”,才能促进学生努力去“堂堂清”、“日日清”,现在,“三清”已成为我校的一种学习习惯。 (三)、重视抓差,落实“三清” 本学期本着“每一个学生都能学好”、“每一个学生都能合格”的信念,努力营造尊重学生、关心学生、主动为学生服务的育人氛围。深入学生、了解学生、研究学生,帮助每一个学生健康成长,不忽视学生的每一个闪光点,也不放过每一学生的弱点,不让一个学生掉队。在教学中学校普遍采用了“先学后教,当堂训练”的课堂教学结构,所谓“先学”就是让学生自主学习。所谓“后教”,就是指学生合作学习,会的学生教不会的学生,最后教师点拨,从而解决“差生”存在的问题。课堂教师提问、做练习,都由“差生”打头阵,让“差生”的问题在课堂上得到最大限度的暴露,便于师生有针对性的辅导。这样,既让优等生能力强了,又让“差生”基本解决了自己的疑难问题。同时,教师课后辅导的主要对象也是“差生”,交流谈心最多的也是“差生”,由于全组老师的辛勤耕耘,使所有学生都在原有基础上取得了长足的进步。 (四)、根据学校要求,做好日常工作 我们备课组活动每周一次,每次活动定时间、定内容、定中心发言人,并将每次活动精神落到实处。认真对教学常规进行检查,本学期对教师的备课情况进行了细致检查,不定期地检查课堂教学情况、作业批改反馈情况等。另外,我们还认真组织听课活动,包括校内和校外的公开课和讲座,通过学习与探讨,有力的提高了我们的教学水平,同时本学期本备课组每人至少出了一份有质量的中考模拟试题,符合中考大纲要求,提高了教师把握教材、理解教材的能力,学生通过模拟考试,对中考也有了充足的认识和准备。 (五)、有目的、有计划、有步骤地安排实施总复习教学。 一、全面复习基础知识,加强基本技能训练。 这个阶段的复习目的’是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。必须深钻教材,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成体系。课本中的例题、练习和作业要让学生弄懂、会做。 我们初三数学备课组人数比较多,在分配出配套练习题时,由两个老师为一组集体研究某一单元,然后分工写学案,在每一个学案中都有典型例题讲解,随后配以针对性综合练习。授课时先由教师引导学生复习每个学案所针对的知识点,做好板书,指导学生按“板书提要”复习,同时引导学生根据个人具体情况把遗忘了的知识重温一遍,加深记忆,并引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,然后进行典型例题讲解,教给学生解答的思路和方法,并及时进行归纳总结,让学生形成知识体系、规律体系。每做完一张学案,老师们都能认真批改,通过批改发现问题,及时解决问题。共性的问题集中讲,个别问题通过请教别人解决。这样做即能激发学生的学习积极性,又能减少学生做题的盲目性。 二、系统复习,各个击破。 (1)系统整理知识网络,提高复习效率。 在总复习的第二阶段,我们依据基础知识的联系和转化,系统整理,重新组织。指导学生构建数学知识的结构网络,我们在这一阶段的教学按知识块组织复习,可将代数部分分为四个单元:数与式;方程与不等式;函数;统计初步等;将几何部分分为六个单元:线、角、平行线;三角形;四边形;相似;三角函数;圆等,做到既要有目的性、典型性和规律性,又要有启发性、灵活性和综合性,让学生体会方程、全等三角形和相似形、圆、函数等知识之间的纵横联系。 (2)、归纳数学思想,总结数学方法。 中考数学试题除了着重考查学生的基础知识外,还十分重视对数学方法的考查,如配方法、换元法、待定系数法、判别式法、因式分解法等等操作性较强的数学方法。我们指导学生熟练掌握每一种方法的实质、解题步骤和它所适用的题型,灵活运用常见的添辅助线的主要方法。其次我们还引导学生重视对数学思想的理解及运用,如函数思想、方程思想、数形结合的思想、分类讨论思想、化归思想、运动思想等。 (3)、加强探索性试题的研究,培养解决实际问题的能力。 在新课程标准的要求下,近几年的中考试卷中增加了探索性问题,学生必须通过观察、比较、分析、综合、猜想等系列活动,运用已有的数学知识与数学方法,经过推理与计算,才能得出正确的结论。另外还有与学生生活背景相关的应用题,学生要能够从具体问题中建立数学模型,运用数学知识解决实际问题。为此,我们教师把近几年的相关中考试题分类整理,集中研究,抓住本质,帮助学生掌握解题技能,形成了一定能力。 三、加强心理和智力的综合训练,提高考试信心。 这是整个复习过程中第三阶段,是不可缺少的一环。在这一阶段我们不是盲目地强化训练和大运动量的练习,而要根据实际情况有选择地进行套题训练,通过练、评、反思,查缺补漏,提高学生解题技能。针对我省今年新的中考要求各类题型和试题结构,进行全真模拟训练,让学生稳定心态,增加信心,特别强化运算的快和准;重视解题过程教学,强调规范、简洁、严谨解题;善于放弃和攻坚,保证会做之题不失分,能够做一步就毫不犹豫的攻坚;过难之题确实不会做,学会放弃。这种训练,使得学生水准大有长进,信心十足,相信他们在中考中必能获胜。 四、竞赛和中考成绩斐然 我们辅导、组织初三学生参加的本学期全国“《数学周报》杯”数学竞赛中,一等奖获奖人数仅次于海南实验中学,在全省排名第二,受到了省市教研室领导、学校领导、各校同行的一致好评,为学校争光添彩;在20xx年琼海市五科联赛中,数学科全校得A人数将近100人左右,学校有91名学生进入全市100名;在20xx年海南省中考中,数学科全校得A人数229人,占琼海市数学科得A人数的59.2%。 五、科组举办和参加的活动 在学校领导的支持下,我组本学期成功组织了几次全市初三数学教研活动,并参加了在昌茂花园学校举办的全省初三数学复习研讨会;参加了在海南鸿运大酒店举行的全校初三中考备考会议,参加了在海南省侨中举办的教学研讨会,通过学习和研讨开了眼界,提高了认识,增长了才干,为我们数学组中考备考提供了方向。 初三数学工作总结 篇3 第二学期初三数学教学工作是进行综合复习。总复习以三轮法展开。即第一轮总体复习,梳理各章节知识网络;第二轮分类复习,把知识点分解为框架和版块,再重点复习;第三轮即通过大量的测试,为学生查漏补缺。 其中第二个阶段的复习过程是最重要的,引导学生在这阶段复习时应针对自己最薄弱的环节重点复习,避免平均用力,并养成注重总结和反思平时测试中不足的好习惯。 复习时的具体做法是: 针对学生的弱点重新翻看教材,把零散的知识串联成条条框框,编织成网络,使学生能系统地把握所学知识。为了让学生在考试时能应答自如,教师做到及早统筹安排,寻求更好的复习效果。弄清学生在初中阶段学习的全过程中,哪些知识学的好,掌握的好,遗忘的少;又有哪些知识漏洞较多,基本训练不过硬,是课堂上没有学透。捉住学生的薄弱环节重点复习。 中数学的知识体系,按《初中数学总复习教学参考书》的章节,分类复习。在每个复习专题中对本部分的知识点从了解、理解、掌握、灵活运用这四个层次上进行归纳和强调。根据重点难点进行,典型例题要反复练习直到熟练掌握为止。另外在所选的例题中侧重体现数学思想及方法。如:方程的思想、数形结合的思想、分类讨论的思想、转化的思想;换元法、配方法、待定系数法。通过复习使学生对这些数学思想、方法更加明确,应用起来更加自觉,更加熟练。 三、综合训练,克服学生新题型难、不可攻破的畏惧心理 数学新题型的训练有应用型问题、阅读型问题、探索型问题;数学综合题训练如中考最后三道题的类型,一般来说,在试卷里属于比较难的,难就难在它的综合性、探索性和应用性。还有像方程型综合题训练、三角形综合题、几何型综合题、代数几何综合题、多学科综合题。练综合题的目的是为了提高临 场的解题能力,同时也是一个发现弱点及时查缺补漏的机会。这样会从内容到方法、到观点的深层次的提高。通过做综合题,指导学生如何审题、如何分析。使同学们积累考试经验,从而会开拓解题思路,提高分析问题、解决问题的能力,更加能够适应题型的不断变化,掌握各种题型的多种解题思路。中考所设计的开放型、探究型和阅读理解型的试题,就是考察数学的综合能力。开放型问题有利于考生创造性的发挥,探究型试题有利于考察学生创新意识和实践能力。 四、对于常考题型做进一步总结 在复习中,强化重点、强化规律、纠正解答中的不良习惯,掌握正确的答题程序、答题技巧等。通过反复练习、强化学生记忆,以提高准确率。让学生仔细总结做题时失误的地方,“吃一堑,长一智。”同时,要求学生心态上保持平和,相信中考很基本,树立信心,订好学习计划,不要乱了阵脚。注重落实,稳扎稳打.五、要求学生保持良好的心态、扎实的`基础,灵活的方法和较高的能力解答较易试题,严谨细致,落实到位;解答中档试题,调整心态,坚持不懈;解答较难试题,顽强拼搏,不言放弃。解题之前思路分析很重要,学习数学不仅要学怎么做怎么算,更重要的要学怎么想,这样我们把解题之前的思路分析作为重点,从中逐渐学会分析、判断和决策。解答后,有一个很关键的步骤,就是归纳总结,就是做完以后好好想想我在做题过程中,遇到哪些困难,是怎样克服的,这是什么类型的题,体现了什么数学思想和方法,有些什么经验和教训。这种总结能够为我们做下一个题有所帮助,也就是通过良性循环提高解答数学题的质量,总之就是要求学生科学的去做题。我们的经验是:不定图形要注意分类讨论;联系实际的问题要注意实际意义。 经过师生的共同努力,学生们对参加中考都充满了必胜的信心。 初三数学工作总结 篇4 第21章二次根式 1、二次根式:一般地,式子叫做二次根式。 注意: (1)若这个条件不成立,则不是二次根式; (2)是一个重要的非负数,即; ≥0。 2、重要公式: 3、积的算术平方根: 积的算术平方根等于积中各因式的算术平方根的积; 4、二次根式的乘法法则:。 5、二次根式比较大小的方法: (1)利用近似值比大小; (2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小。 6、商的算术平方根:, 商的算术平方根等于被除式的算术平方根除以除式的算术平方根。 7、二次根式的除法法则: 分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。 8、最简二次根式: (1)满足下列两个条件的二次根式,叫做最简二次根式, ①被开方数的因数是整数,因式是整式, ②被开方数中不含能开的尽的因数或因式; (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式。 9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。 10、二次根式的混合运算: (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用; (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。 第22章一元二次方程 1、一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。 2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。 3。一元二次方程根的判别式:当ax2+bx+c=0 (a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题: Δ>0 有两个不等的实根; Δ=0 有两个相等的实根;ΔR+r外切d=R+r相交R-r第五章概率初步 1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。 2用列举法求概率 一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=mnm稳定在n3用频率去估计概率 初三数学工作总结 篇15 第1章 二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。 在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论: 注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到 并运用它们进行二次根式的化简。 二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。 第2章 一元二次方程 学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。 本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念, 22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。 (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。 (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。 (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。 22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。 初三数学工作总结 篇16 中位线概念 (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。 注意: (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。 (2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。 中位线定理 (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. (2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 中位线定理推广 三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。 初三数学工作总结 篇17 第21章二次根式知识框图 理解并掌握下列结论: (1)是非负数;(2);(3); I.二次根式的定义和概念: 1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0 2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。 II.二次根式√ā的简单性质和几何意义 1)a≥0;√ā≥0[双重非负性] 2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。 IV.二次根式的乘法和除法 1运算法则 √a√b=√ab(a≥0,b≥0) √a/b=√a/√b(a≥0,b>0) 二数二次根之积,等于二数之积的二次根。2共轭因式 如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。 V.二次根式的加法和减法 1同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。 3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并 Ⅵ.二次根式的混合运算 1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 VII.分母有理化 分母有理化有两种方法I.分母是单项式 如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多项式要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图 旋转的定义 旋转对称中心 大于360°)。 把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种 图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°, 也就是说: ①中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。 ②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。 中心对称图形 正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆 只是中心对称图形 平行四边形等.第24章圆知识框图 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。 圆的平面几何性质和定理 一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。 ⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 ⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等; ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③S三角=1/2*△三角形周长*内切圆半径 ④两相切圆的连心线过切点(连心线:两个圆心相连的线段) ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 〖有关切线的性质和定理〗 圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。 切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗 1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/1804.扇形面积S=π(R^2-r^2)5.圆锥侧面积S=πrl 第25章概率初步知识框图 第26章二次函数 知识框图 定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: 一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)^2+k 交点式(与x轴):y=a(x-x1)(x-x2) 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 1.抛物线是轴对称图形。对称轴为直线x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数 Δ=b-4ac>0时,抛物线与x轴有2个交点。Δ=b-4ac=0时,抛物线与x轴有1个交点。_______ Δ=b-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b-4ac的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)解析式: 第27章相似知识框图 相似三角形的认识 对应角相等,对应边成比例的.两个三角形叫做相似三角形。(similartriangles)。互为相似形的三角形叫做相似三角形 相似三角形的判定方法 根据相似图形的特征来判断。(对应边成比例,对应角相等) 1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似; (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似; 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理 三角形相似的判定定理推论 推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。 相似三角形的特例 能够完全重合的两个三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相似比是k=1。 全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。 因此,相似三角形包括全等三角形。全等三角形的定义 能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论 1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。 2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到 4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)。全等三角形的性质 1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。 7、三边对应相等的两个三角形全等。(SSS) 8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA) 10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用 1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。 第28章锐角三角函数 知识框图 第29章投影与视图知识框图 代数重点难点总结 方程(组) 一、基本概念 1.方程、方程的解(根)、方程组的解、解方程(组)二、一元二次方程1.定义及一般形式: 2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:b24ac bc4.根与系数的关系(韦达定理):x1+x2=,x1x2= aa逆定理:若,则以x1,x2为根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式: 三、可化为一元二次方程的方程1.分式方程⑴定义 ⑵基本思想:去分母 ⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义 ⑵基本思想:分母有理化 ⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法 3.简单的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。 综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 函数及其图象 ★重难点★二次函数的图象和性质。一、平面直角坐标系 1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数 1.表示方法:⑴解析法;⑵列表法;⑶图象法。 2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。 3.画函数图象:⑴列表;⑵描点;⑶连线。三、二次函数(定义→图象→性质)⑴定义: ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a0时,在对称轴左侧,右侧;a 四边形 ★重难点★相交线与平行线、三角形、四边形的有关概念、判定、性质。分类表: 1.一般性质(角)⑴内角和:360° ⑵顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形 ⑴研究它们的一般方法: ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形↑ ⑷对角线的纽带作用:3.对称图形 ⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理 ③平行线间的距离处处相等。(如,找下图中面积相等的三角形) 5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。 第十章圆 ★重难点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。一、圆的基本性质1.圆的定义 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3.“三点定圆”定理4.垂径定理及其推论 5.“等对等”定理及其推论 5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系 1.三种位置及判定与性质:相离、相切、相交2.切线的性质(重点) 3.切线的判定定理(重点)。圆的切线的判定有⑴⑵ 4.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切)外离、外切、相交、内切、内含 2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角: 内角的一半:(解Rt△OAM可求出相关元素等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图 1.作三角形的外接圆、内切圆2.平分已知弧 3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角4.切点圆心莫忘连 5.两圆相切公切线(连心线)6.两圆相交公共弦 初三数学工作总结 篇18 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 8、多边形的内角:多边形相邻两边组成的角叫做它的内角。 9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。 13、公式与性质: ⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 ⑶多边形内角和公式:边形的内角和等于·180° ⑷多边形的外角和:多边形的外角和为360°。 ⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。
本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://51itzy.com/130871.html